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Abstract. We study certified robustness of machine learning classifiers
against adversarial perturbations. In particular, we propose the first uni-
versally approximated certified robustness (UniCR) framework, which
can approximate the robustness certification of any input on any classi-
fier against any ℓp perturbations with noise generated by any continuous
probability distribution. Compared with the state-of-the-art certified de-
fenses, UniCR provides many significant benefits: (1) the first universal
robustness certification framework for the above 4 “any”s; (2) automatic
robustness certification that avoids case-by-case analysis, (3) tightness
validation of certified robustness, and (4) optimality validation of noise
distributions used by randomized smoothing. We conduct extensive ex-
periments to validate the above benefits of UniCR and the advantages of
UniCR over state-of-the-art certified defenses against ℓp perturbations.

Keywords: Adversarial Machine Learning; Certified Robustness; Ran-
domized Smoothing

1 Introduction

Machine learning (ML) classifiers are vulnerable to adversarial perturbations [41,5,7,6]).
Certified defenses [54,31,4,20,22,44,12,42] were recently proposed to ensure prov-
able robustness against adversarial perturbations. Typically, certified defenses
aim to derive a certified radius such that an arbitrary ℓp (e.g., ℓ1, ℓ2 or ℓ∞)
perturbation, when added to a testing input, cannot fool the classifier, if the ℓp-
norm value of the perturbation does not exceed the radius. Among all certified
defenses, randomized smoothing [39,36,11] based certified defense has achieved
the state-of-the-art certified radius and can be applied to any classifier. Specifi-
cally, given a testing input and any classifier, randomized smoothing first defines
a noise distribution and adds sampled noises to the testing input; then builds a
smoothed classifier based on the noisy inputs, and finally derives certified radius
for the smoothed classified, e.g., using the Neyman-Pearson Lemma [11], against
an ℓp perturbation.

However, existing randomized smoothing based (and actually all) certified
defenses only focus on specific settings and cannot universally certify a classifier
against any ℓp perturbation or any noise distribution. For example, the certified
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Table 1. Comparison with highly-related works.

Classifier Smoothing Noise Perturbations Tightness Optimizable Analysis-free

Lecuyer et al. [36] Any Gaussian/Laplace Any ℓp, p ∈ R+ Loose No No
Cohen et al. [11] Any Gaussian ℓ2 Strictly Tight No No
Teng et al. [49] Any Laplace ℓ1 Strictly Tight No No

Dvijotham et al. [16] Any f-divergence-constrained Any ℓp, p ∈ R+ Loose No No
Croce et al. [12] ReLU-based No Any ℓp for p >= 1 Loose No No
Yang et al. [59] Any Multiple types Any ℓp, p ∈ R+ Strictly Tight No No
Zhang et al. [60] Any ℓp-term-constrained ℓ1, ℓ2, ℓ∞ Strictly Tight No Yes

Ours (UniCR) Any Any continuous PDF Any ℓp, p ∈ R+ Approx. Tight Yes Yes

radius derived by Cohen et al. [11] is tied to the Gaussian noise and ℓ2 pertur-
bation. Recent works [59,60,12] propose methods to certify the robustness for
multiple norms/noises, e.g., Yang et al. [59] propose the level set and differential
method to derive the certified radii for multiple noise distributions. However,
the certified radius derivation for different norms is still subject to case-by-case
theoretical analyses. These methods, although achieving somewhat generalized
certified robustness, are still lack of universality (See Table 1 for the summary).

In this paper, we develop the first Universally Approximated Certified Robust
ness (UniCR) framework based on randomized smoothing. Our framework can
automate the robustness certification for any input on any classifier against
any ℓp perturbation with noises generated by any continuous probability density
function (PDF). As shown in Figure 1, our UniCR framework provides four
unique significant benefits to make certified robustness more universal, practical
and easy-to-use with the above four “any”s. Our key contributions are as follows:
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Fig. 1. Our Universally Approximated Certified Robustness (UniCR) framework.

1. Universal Certification. UniCR is the first universal robustness certifica-
tion framework for the 4 “any”s.

2. Automatic Certification. UniCR provides an automatic robustness certi-
fication for all cases. It is easy-to-launch and avoids case-by-case analysis.

3. Tightness Validation of Certified Radius. It is also the first framework
that can validate the tightness of the derived certified radius in existing
certification methods [39,36,11] or future methods based on any continuous
noise PDF. In Section 3, we validate the tightness of the state-of-the-art
certification methods (e.g., see Figure 4).

4. Optimality Validation of Noise PDFs. UniCR can also automatically
tune the parameters in noise PDFs to strengthen the robustness certifica-



UniCR 3

tion against any ℓp perturbations. For instance, On CIFAR10 and ImageNet
datasets, UniCR improves as high as 38.78% overall performance over the
state-of-the-art certified defenses against all ℓp perturbations. In Section 5,
we show that Gaussian noise and Laplace noise are not the optimal random-
ization distribution against the ℓ2 and ℓ1 perturbation, respectively.

2 Universally Approximated Certified Robustness

In this section, we propose the theoretical foundation for universally certifying a
testing input against any ℓp perturbations with noise from any continuous PDF.

2.1 Universal Certified Robustness

Consider a general classification problem that classifies input data in Rd to
a class belonging to a set of classes Y. Given an input x ∈ Rd, an any (base)
classifier f that maps x to a class in Y, and a random noise ϵ from any continuous
PDF µx. We define a smoothed classifier g as the most probable class over the
noise-perturbed input:

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c) (1)

Then, we show that the input has a certified accurate prediction against any lp
perturbation and its certified radius is given by the following theorem.

Theorem 1. (Universal Certified Robustness) Let f : Rd → Y be any de-
terministic or random classifier, and let ϵ be drawn from an arbitrary continuous
PDF µx. Denote g as the smoothed classifier in Equation (1), the most probable
and second probable classes for predicting a testing input x via g as cA, cB ∈ Y,
respectively. If the lower bound of the class cA’s prediction probability pA ∈ [0, 1],
and the upper bound of the class cB’s prediction probability pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (2)

Then, we guarantee that g(x + δ) = cA for all ||δ||p ≤ R, where R is called the
certified radius and it is the minimum ℓp-norm of all the adversarial pertur-
bations δ that satisfies the robustness boundary conditions as below:

P(µx(x− δ)

µx(x)
≤ tA) = pA, P(µx(x− δ)

µx(x)
≥ tB) = pB ,

P( µx(x)

µx(x+ δ)
≤ tA) = P( µx(x)

µx(x+ δ)
≥ tB) (3)

where tA and tB are auxiliary parameters to satisfy the above conditions.

Proof. See the detailed proof in Appendix B.1.

Robustness Boundary. Theorem 1 provides a novel insight that meeting cer-
tain conditions is equivalent to deriving the certified robustness. The conditions
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Fig. 2. An illustration to Theorem 1. The conditions in Theorem 1 construct a “Ro-
bustness Boundary” in δ space. In case of a perturbation inside the robustness
boundary, the smoothed prediction can be certifiably correct. From left to right, the
figures show that the minimum ||δ||1, ||δ||2 and ||δ||∞ on the robustness boundary are
exactly the certified radius R in ℓ1, ℓ2 and ℓ∞-norm, respectively.

in Equation (3) construct a boundary in the perturbation δ space, which is de-
fined as the “robustness boundary”. Within this robustness boundary, the pre-
diction outputted by the smoothed classifier g is certified to be consistent and
correct. The robustness boundary, rather than the certified radius, is actually
more general to measure the certified robustness since the space constructed by
each certified radius (against any specific ℓp perturbation) is only a subset of the
space inside the robustness boundary. Without loss of generality, the traditional
certified radius can be alternatively defined as the radius that maximizes the
ℓp ball inside the robustness boundary, which is also the perturbation δ on the
boundary that minimizes ||δ||p. Figure 2 illustrates the relationship between cer-
tified radius and the robustness boundary against ℓ1, ℓ2 and ℓ∞ perturbations.

Notice that, given any continuous noise PDF, the corresponding robustness
boundary for all the ℓp-norms would naturally exist. Each maximum ℓp ball is
a subspace of the robustness boundary, and gives the certified radius for that
specific ℓp-norm. Thus, all the certified radii can be universally derived, and
Theorem 1 provides a theoretical foundation to certify any input against any ℓp
perturbations with any continuous noise PDF.

All ℓp Perturbations. Although we mainly introduce UniCR against ℓ1, ℓ2 and
ℓ∞ perturbations, our UniCR is not limited to these three norms. We emphasize
that any p ∈ R+ (See Appendix D.5) can be used and our UniCR can derive
the corresponding certified radius since our robustness boundary gives a general
boundary in the δ perturbation space.

2.2 Approximating Tight Certified Robustness

The tight certified radius can be derived by finding a perturbation δ on the
robustness boundary that has a minimum ∥δ∥p (for any p ∈ R+). However, it
is challenging to either find a perturbation δ that is exactly on the robustness
boundary, or find the minimum ||δ||p. Here, we design an alternative two-phase
optimization scheme to accurately approximate the tight certification in practice.
In particular, Phase I is to suffice the conditions such that δ is on the robustness
boundary, and Phase II is to minimize the ℓp-norm.

We perform Phase I by the “scalar optimization”, where any perturbation
δ will be λ-scaled to the robustness boundary (see 1○ in Figure 3). We per-
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Fig. 3. An illustration to estimating the certified radius. The scalar optimization ( 1○)
and direction optimization ( 2○) effectively find the minimum ||δ||p within the robust-
ness boundary, which is the certified radius R.

form Phase II by the “direction optimization”, where the direction of δ will be
optimized towards a minimum ∥λδ∥p (see 2○ in Figure 3). In the two-phase op-
timization, the direction optimization will be iteratively executed until finding
the minimum ||λδ||p, where the perturbation δ will be scaled to the robust-
ness boundary beforehand in every iteration. Thus, the intractable optimization
problem in Equation 3 can be converted to:

R = ||λδ||p,
s.t. δ ∈ argmin

δ
||λδ||p, λ = argmin

λ
|K|,

P(µx(x− λδ)

µx(x)
≤ tA) = pA, P(µx(x− λδ)

µx(x)
≥ tB) = pB ,

K = P( µx(x)

µx(x+ λδ)
≤ tA)− P( µx(x)

µx(x+ λδ)
≥ tB). (4)

The scalar optimization in Equation (4) aims to find the scale factor λ that scales
a perturbation δ to the boundary so that |K| approaches 0. With the scalar λ for
ensuring that the scaled δ is nearly on the boundary, the direction optimization
optimizes the perturbation δ’s direction to find the certified radius R = ||λδ||p.
We also present the theoretical analysis on the certification confidence and the
optimization convergence in Appendix B.4 and B.5, respectively.

3 Deriving Certified Radius within Robustness Boundary

In this section, we will introduce how to universally and automatically derive
the certified radius against any ℓp perturbations within the robustness boundary
constructed by any noise PDF. In particular, we will present practical algorithms
for solving the two-phase optimization problem to approximate the certified
radius, empirically validate that our UniCR approximates the tight certified
radius derived by recent works [11,59,49], and finally discuss how to apply UniCR
to validate the radius of existing certified defenses.

3.1 Calculating Certified Radius in Practice

Following the existing randomized smoothing based defenses [11,49], we first use
the Monte Carlo method to estimate the probability bounds (pA and pB). Then,
we use them in our two-phase optimization scheme to derive the certified radius.
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Estimating Probability Bounds. The two-phase optimization needs to esti-
mate the probabilities bounds pA and pB and compute two auxiliary parameters
tA and tB (required by the certified robustness based on the Neyman-Pearson
Lemma in Appendix A). Identical to existing works [11,49], the probabilities
bounds pA and pB are commonly estimated by the Monte Carlo method [11].
Given the estimated pA and pB as well as any given noise PDF and a perturba-
tion δ, we also use the Monte Carlo method to estimate the cumulative density
function (CDF) of fraction µx(x− λδ)/µx(x). Then, we can compute the auxil-
iary parameters tA and tB . Specifically, the auxiliary parameters tA and tB can
be computed by tA = Φ−1(pA) and tB = Φ−1(pB), where Φ−1 is the inverse
CDF of the fraction µx(x−λδ)/µx(x). The procedures for computing tA and tB
are detailed in Algorithm 1 in Appendix C.

Scalar Optimization. Finding a perturbation δ that is exactly on the robust-
ness boundary is computationally challenging. Thus, we alternatively scale the
δ to approach the boundary. We use the binary search algorithm to find a scale
factor that minimizes |K| (the distance between δ and the robustness boundary).
The algorithm and detailed description are presented in Appendix C.2.

Direction Optimization. We use the Particle Swarm Optimization (PSO)
method [33] to find δ that minimizes the ℓp-norm after scaling to the robustness
boundary. In each iteration of PSO, the particle’s position represents δ, and the
cost function is fPSO(δ) = ||λδ||p, where the scalar λ is found by the scalar
optimization. The PSO aims to find the position δ that can minimize the cost
function. To pursue convergence, we choose some initial positions in symmetry
for different ℓp-norms. Empirical results show that the radius obtained by PSO
with these initial positions can accurately approximate the tight certified radius.
We show how to set the initial positions in Appendix C.3.

In our experiments, the certification (deriving the certified radius) can be
efficiently completed on MNIST [35], CIFAR10 [34] and ImageNet [46] datasets
(less than 10 seconds per image), as shown in Appendix D.4.

Certified Radius Comparison with State-of-The-Arts. We compare the
certified radius obtained by our two-phase optimization method and that by the
state-of-the-arts [11,59,49] and the comparison results are shown in Figure 4.
Note that the certified radius is a function of pA (the prediction probability of
the top-1 class). The pA-R curve can well depict the certified radius R w.r.t.
pA. We observe that our pA-R curve highly approximates the tight theoretical
curves in existing works, e.g., the Gaussian noise against ℓ2 and ℓ∞ perturbations
[11,59], Laplace noise against ℓ1 perturbations [49], as well as General Normal
noise and General Exponential noise derived by Yang et al. [59]’s method.

Tightness Validation of Certified Radius. Since our UniCR accurately ap-
proximates the tight certified radius, it can be used as an auxiliary tool to
validate whether an obtained certified radius is tight or not. For example, the
certified radius derived by PixelDP [36]3 is loose, because [36]’s pA-R curve in

3 PixelDP [36] adopts differential privacy [18], e.g., Gaussian mechanism to generate
noises for each pixel such that certified robustness can be achieved for images.
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Fig. 4. pA-R curve comparison of our method and state-of-the-arts (i.e., Teng et al.
[49], Cohen et al. [11], Lecuyer et al. [36] and Yang et al. [59]). We observe that the
certified radius obtained by our UniCR is close to that obtained by the state-of-the-arts.
These results demonstrate that our UniCR can approximate the tight certification to
any input in any ℓp norm with any continuous noise distribution. We also evaluate our
UniCR’s defense accuracy against a diverse set of attacks, including universal attacks
[10], white-box attacks [13,55], and black-box attacks [1,6], and against ℓ1, ℓ2 and ℓ∞
perturbations. The experimental results show that UniCR is as robust as the state-of-
the-arts (100% defense accuracy) against all the types of the real attack. The detailed
experimental settings and results are presented in Appendix D.2.

Figure 4(b) is far below ours. Also, Yang et al. [59] derives a low bound certified
radius for Pareto Noise (Figure 4(d))— It shows that this certified radius is not
tight either since it is below ours. For those theoretical radii that are slightly
above our radii, they are likely to be tight.

Moreover, due to the high university, our UniCR can even derive the certified
radii for complicated noise PDFs, e.g., mixture distribution in which the certi-
fied radii are difficult to be theoretically derived. In Section 5.2, we show some
examples of deriving radii using UniCR on a wide variety of noise distributions
in Figure 6-8. In most examples, the certified radii have not been studied before.

4 Optimizing Noise PDF for Certified Robustness

UniCR can derive the certified radius using any continuous noise PDF for ran-
domized smoothing. This provides the flexibility to optimize a noise PDF for
enlarging the certified radius. In this section, we will optimize the noisy PDF in
our UniCR framework for obtaining better certified robustness.
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4.1 Noise PDF Optimization
All the existing randomized smoothing methods [11,49,59,60] use the same noise
for training the smoothed classifier and certifying the robustness of testing in-
puts. The motivation is that: the training can improve the lower bound of the
prediction probability over the the same noise as the certification. Here, the
question we ask is: Must we necessarily use the same noise PDF to train the
smoothed classifier and derive the certified robustness? Our answer is No!

𝛿

𝜇𝑥

𝜇𝑥′

𝑅′

𝑅

Fig. 5. An illustration to noise PDF optimization
(take ℓ2-norm perturbation as an example). The
noise distribution is tuned from µx to µ′

x, which en-
larges the robustness boundary. Thus, UniCR can
find a larger certified radius R′.

We study the master op-
timization problem that uses
UniCR as a function to max-
imize the certified radius by
tuning the noise PDF (differ-
ent randomization), as shown
in Figure 5. To defend against
certain ℓp perturbations for
a classifier, we consider the
noise PDF as a variable (Re-
member that UniCR can pro-
vide a certified radius for each
noise PDF), and study the following two master optimization problems with two
different strategies:

1. Classifier-Input Noise Optimization (“C-OPT”): finding the optimal noise
PDF and injecting the same noise from this noise PDF into both the training
data to train a classifier and testing input to build a smoothed classifier.

2. Input Noise Optimization (“I-OPT”): Training a classifier with the standard
noise (e.g., Gaussian noise), while finding the optimal noise PDF for the
testing input and injecting noise from this PDF into the testing input only.

4.2 C-OPT and I-OPT
Before optimizing the certified robustness, we need to define metrics for them.
First, since I-OPT only optimizes the noise PDF when certifying each testing
input, a “better” randomization in I-OPT can be directly indicated by a larger
certified radius for a specific input. Second, since C-OPT optimizes the noise
PDF for the entire dataset in both training and robustness certification, a new
metric for the performance on the entire dataset need to be defined.

Existing works [60,59] draw several certified accuracy vs. certified radius
curves computed by noise with different variances (See Figure 10 in Appendix
D.1). These curves represent the certified accuracy at a range of certified radii,
where the certified accuracy at radius R is defined as the percent of the testing
samples with a derived certified radius larger than R (and correctly predicted
by the smoothed classifier). To simply measure the overall performance, we use
the area under the curve as an overall metric to the certified robustness, namely
“robustness score”. Then, we design the C-OPT method based on this metric.
Specifically, the robustness score Rscore is formally defined as below:

Rscore =

∫ +∞

0

max
σ

(Accσ(R))dR, σ ∈ Σ, (5)
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where Accσ(R) is the certified accuracy at radius R computed by the noises with
variance σ, and Σ is a set of candidate σ.

Notice that our UniCR can automatically approximate the certified radius
and compute the robustness score w.r.t. different noise PDFs, thus we can tune
the noise PDF towards a better robustness score. From the perspective of op-
timization, denoting the noise PDF as µ, the C-OPT and the I-OPT problems
are defined as maxµ Rscore for a classifier and maxµ R for an input, respectively.

Algorithms for Noise PDF Optimization. We use grid-search in C-OPT to
search the best parameters of the noise PDF. We use Hill-Climbing algorithms in
I-OPT to find the best parameters of the noise PDF around the noise distribution
used in training while maintaining the certified accuracy.

With the UniCR for estimating the certified radius, we can further tune
the noise PDF to each input or the classifier. Specifically, let µ(x,α) denote
the noise PDF, where α is a set of hyper-parameters in the function, i.e.,
α = [α1, α2, ..., αm]. We simply use grid-search algorithm to find the best hyper-
parameters in the classifier smoothing (C-OPT). For the input noise optimiza-
tion (I-OPT), we use the Hill-Climbing algorithm to find the optimal hyper-
parameters in the function for each input. During the algorithm execution,
hyper-parameter for the input is iteratively updated if a better solution is found
in each round, until convergence. The procedures for the Hill Climbing algorithm
are summarized in Algorithm 3 in Appendix C.4.

Optimality Validation of Noise PDF. Finding an optimal noise PDF against
a specific ℓp perturbation is important. Although Gaussian distribution can be
used for defending against ℓ2 perturbations with tight certified radius, there is no
evidence showing that Gaussian distribution is the optimal distribution against
ℓ2 perturbations. Our UniCR can also somewhat validate the optimality of using
different noise PDFs against different ℓp perturbations. For instance, Cohen et
al. [11]’s certified radius is tight for Gaussian noise against ℓ2 perturbations
(see Figure 4(b)). However, it is validated as not-optimal distribution against ℓ2
perturbations in our experiments (see Table 2).

5 Experiments

In this section, we thoroughly evaluate our UniCR framework, and benchmark
with state-of-the-art certified defenses. First, we evaluate the universality of
UniCR by approximating the certified radii w.r.t. the probability pA using a
variety of noise PDFs against ℓ1, ℓ2 and ℓ∞ perturbations. Second, we validate
the certified radii in existing works (results have been discussed and shown in
Section 3). Third, we evaluate our noise PDF optimization on three real-world
datasets. Finally, we compare our best certified accuracy on CIFAR10 [34] and
ImageNet [46] with the state-of-the-art methods.

5.1 Experimental Setting
Datasets. We evaluate our performance on MNIST [35], CIFAR10 [34] and
ImageNet [46], which are common datasets to evaluate the certified robustness
for image classification.
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Metrics. Following most existing works (e.g., Cohen et al. [11]), we use the
“approximate certified test set accuracy” at radius R to evaluate the per-
formance of certified robustness, which is defined as the fraction of the test set
that the smoothed classifier will predict correctly against the perturbation within
the radius R. The certified accuracy at different radii varies w.r.t. different noise
variances, since the variance decides the trade-off between the radius and accu-
racy. A common way to compare the certified robustness of a noise on a dataset
is to present the certified accuracy over a range of variances. However, there does
not exist a unified metric used for measuring and comparing the certified accu-
racy. Therefore, to ensure a fair comparison, we also present the robustness
score (Section 4.2) to measure the overall certified robustness across a range of
noise variances.

Experimental Environment. All the experiments were performed on the NSF
Chameleon Cluster [32] with Intel(R) Xeon(R) Gold 6126 2.60GHz CPUs, 192G
RAM, and NVIDIA Quadro RTX 6000 GPUs.

5.2 Universality Evaluation
As randomized smoothing derives certified robustness for any input and any
classifier, our evaluation targets “any noise PDF” and “any ℓp perubations”.

The certified radii of some noise PDFs, e.g., Gaussian noise against ℓ2 per-
turbations [11], Laplace noise against ℓ1 perturbations [49], Pareto noise against
ℓ1 perturbations [59], have been derived. These distributions have been verified
by our UniCR framework in Figure 4, where our certified radii highly approxi-
mate these theoretical radii. However, there are numerous noise PDFs of which
the certified radii have not been theoretically studied, or they are difficult to
derive. It is important to derive the certified radii of these distributions in order
to find the optimal PDF against each of the ℓp perturbations. Therefore, we use
our UniCR to approximately compute the certified radii of numerous distribu-
tions (including some mixture distributions, see Table 7 in Appendix D.3), some
of which have not been studied before. Specifically, we evaluate different noise

PDFs with the same variance, i.e., σ = Eϵ∼µ[
√

1
d ||ϵ||

2
2] = 1. For those PDFs with

multiple parameters, we set β as 1.5, 1.0 and 0.5 for General Normal, Pareto,
and mixture distributions, respectively. Following Cohen et al. [11], and Yang et
al. [59], we consider the binary case (Theorem 3) and only compute the certified
radius when pA ∈ (0.5, 1.0].

In Figure 6-8, we plot the R-pA curves for the noise distributions listed in
Table 7 in Appendix D.3 against ℓ1, ℓ2 and ℓ∞ perturbations. Specifically, we
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Table 2. Classifier-input noise optimization (C-OPT). We show the Robustness Score

w.r.t. different β settings of General Normal distribution (∝ e−|x/α|β ). The σ is set to
1.0 for all distributions by adjusting the α parameter in General Normal.

β 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3 4.00 5.00

vs. ℓ1 1.8999 2.6136 2.8354 2.7448 2.5461 2.4254 2.3434 2.2615 2.2211 2.1730 2.1081 2.0679 1.9610 1.8925
vs. ℓ2 0.0000 0.0003 1.0373 1.5954 1.9255 2.0882 2.1746 2.1983 2.2081 2.1771 2.1184 2.0655 1.8857 1.7296
vs. ℓ∞ 0.0000 0.0109 0.0420 0.0641 0.0771 0.0839 0.0871 0.0879 0.0880 0.0870 0.0847 0.0825 0.0758 0.0693

present the ℓ∞ radius scaled by ×255 to be consistent with the existing works
[60]. We observe that for all ℓp perturbations, the Gaussian noise generates the
largest certified radius for most of the pA values. All the noise distribution has
very close R-pA curves except the Cauthy distribution. We also notice that
when pA is low against ℓ2 and ℓ∞ perturbations, our UniCR cannot find the cer-
tified radius for the Laplace-based distributions, e.g., Laplace distribution, and
Gaussian-Laplace mixture distribution. This matches the findings on injecting
Laplace noises for certified robustness in Yang et al. [59]—The certified radii for
Laplace noise against ℓ2 and ℓ∞ perturbations are difficult to derive.

We also conduct experiments to illustrate UniCR’s universality in deriving
ℓp norm certified radius for any real number p > 0 in Appendix D.5. Besides,
we also conduct fine-grained evaluations on General Normal, Laplace-Gaussian
Mixture, and Exponential Mixture noises with various β parameters (See Figure
13 in Appendix D.6), and we can draw similar observations from such results.

5.3 Optimizing Certified Radius with C-OPT

We next show how C-OPT uses UniCR to improve the certification against any ℓp
perturbations. Recall that tight certified radii against ℓ1 and ℓ2 perturbations can
be derived by the Laplace [49] and Gaussian [11] noises, respectively. However,
there does not exist any theoretical study showing that Laplace and Gaussian
noises are the optimal noises against ℓ1 and ℓ2 perturbations, respectively. [59,60]
have identified that there exists other better noise for ℓ1 and ℓ2 perturbations.
Therefore, we use our C-OPT to explore the optimal distribution for each ℓp
perturbation. Since the commonly used noise, e.g., Laplace and Gaussian noises,

are only special cases of the General Normal Distribution (∝ e−|x/α|β ), we will
find the optimal parameters α and β that generate the best noises for maximizing
certified radius against each ℓp perturbation.

In the experiments, we use the grid search method to search the best param-
eters. We choose β as the main parameter, and α will be set to satisfy σ = 1.
Specifically, we evaluate C-OPT on the MNIST dataset, where we train a model
on the training set for each round of the grid search and certify 1, 000 images in
the test set. Specifically, for each pair of parameters α and β in the grid search,
we train a Multiple Layer Perception on MNIST with the smoothing noise. Then,
we compute the robustness score over a set of σ = [0.12, 0.25, 0.50, 1.00]. When
approximating the certified radius with UniCR, we set the sampling number as
1, 000 in the Monte Carlo method. The results are shown in Table 2.

We observe that the best β for ℓ1-norm is 0.75 in the grid search. It indicates
that the Laplace noise (β = 1) is not the optimal noise against ℓ1 perturbations.
A slightly smaller β can provide a better trade-off between the certified radius
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Table 3. Average Certified Radius with Input Noise Optimization (I-OPT) against ℓ1,
ℓ2 and ℓ∞ perturbations on ImageNet.

Top ℓ1 radius 20% 40% 60% 80% 100%
Yang’s Gaussian [59] 2.44 2.10 1.59 1.19 0.95
Ours with I-OPT 2.36 2.11 1.64 1.23 0.98
Top ℓ2 radius 20% 40% 60% 80% 100%

Cohen’s Gaussian [11] 2.43 2.10 1.58 1.19 0.95
Ours with I-OPT 2.36 2.11 1.64 1.23 0.98

Top ℓ∞ radius ×255 20% 40% 60% 80% 100%
Yang’s Gaussian [59] 1.60 1.38 1.04 0.78 0.63
Ours with I-OPT 1.75 1.54 1.20 0.90 0.72

and accuracy (measured by the robustness score). When β < 1.0, the radius is
observed to be larger than the radius derived with Laplace noise at pA ≈ 1 (see
Figure 13(a)). Since pA on MNIST is always high, the noise distribution with
β = 0.75 will give a larger radius at most cases. Furthermore, we observe that
the best performance against ℓ2 and ℓ∞ are given by β = 2.25, showing that the
Gaussian noise is not the optimal noise against ℓ2 and ℓ∞ perturbations, either.

5.4 Optimizing Certified Radius with I-OPT

The optimal noises for different inputs are different. We customize the noise for
each input using the I-OPT. Specifically, we adapt the hyper-parameters in the
noise PDF to find the optimal noise distribution for each input (the classifier is
smoothed by a standard method such as Cohen’s [11]).

We perform I-OPT for noise PDF optimization with a Gaussian-trained
ResNet50 classifier (σ = 1) on ImageNet. We compare our derived radius with
the theoretical radius in [59,11]. We use the General Normal distribution to gen-
erate the noise for input certification since it provides a new parameter dimension

for tuning. We tune the parameters α and β in e−|x/α|β . The Gaussian distribu-
tion is only a specific case of the General Normal distribution with β = 2. In the
two baselines [59,11], they set σ = 1 and β = 2, respectively. In the I-OPT, we
initialize the noise with the same setting, but optimize the noise for each input.
When approximating the certified radius with UniCR, we generate 1, 000 Monte
Carlo samples for ImageNet.

Table 3 presents the average values of the top 20%-100% certified radius (the
higher the better). It shows that our method with I-OPT significantly improves
the certified radius over the tight certified radius. This is because our I-OPT pro-
vides a personalized noise optimization to each input (see Figure 14 in Appendix
E for the illustration).

5.5 Best Performance Comparison

In this section, we compare our best performance with the state-of-the-art cer-
tified defense methods on the CIFAR10 and ImageNet datasets. Following the
setting in [11], we use a ResNet110 [24] classifier for the CIFAR10 dataset and
a ResNet50 [24] classifier for the ImageNet dataset. We evaluate the certifica-
tion performance with the noise PDF of a range of variances σ. The σ is set to
vary in [0.12, 0.25, 0.5, 1.0] for CIFAR10 and [0.25, 0.5, 1.0] for ImageNet. We also
present the Robustness Score based on this set of variances. We use the General
Normal distribution and perform the I-OPT. The distribution is initialized with
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Table 4. Certified accuracy and robustness score against ℓ1, ℓ2 and ℓ∞ perturbations
on CIFAR10. Ours: General Normal with I-OPT.

ℓ1 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Teng’s Laplace [49] 39.2 17.2 10.0 6.0 2.8 0.5606
Ours 45.8 22.4 14.8 8.2 3.6 0.7027

ℓ2 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Cohen’s Gaussian [11] 38.6 17.4 8.6 3.4 1.6 0.5392
Ours 48.4 26.8 16.6 6.8 2.0 0.7141

ℓ∞ radius 2
255

4
255

6
255

8
255

10
255

Rscore

Yang’s Gaussian [59] 43.6 21.8 10.8 5.6 2.6 0.0098
Ours 53.4 30.4 21.2 13.2 5.6 0.0136

Table 5. Certified accuracy and robustness score against ℓ1, ℓ2 and ℓ∞ perturbations
on ImageNet (Teng’s Laplace [49] is not available). Ours: General Normal with I-OPT.

ℓ1 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Yang’s Gaussian [59] 58.8 45.6 34.6 27.0 0.0 1.0469
Ours 63.4 49.6 36.8 29.6 6.6 1.1385

ℓ2 radius 0.50 1.00 1.50 2.00 2.50 Rscore

Cohen’s Gaussian [11] 58.8 44.2 34.0 27.0 0.0 1.0463
Ours 62.6 49.0 36.6 28.6 2.0 1.0939

ℓ∞ radius 0.25
255

0.50
255

0.75
255

1.00
255

1.25
255

Rscore

Yang’s Gaussian [59] 63.6 52.4 39.8 34.2 28.0 0.0027
Ours 69.2 57.4 47.2 38.2 33.0 0.0031

the same setting in the baselines, e.g., β = 1 (or 2) for Laplace (Gaussian) base-
line. We benchmark it with the Laplace noise [49] on CIFAR10 when against ℓ1
perturbations; and the Gaussian noise [11,59] on both CIFAR10 and ImageNet
against all ℓp perturbations. For both our method and baselines, we use 1, 000
and 4, 000 Monte Carlo samples on ImageNet and CIFAR10, respectively, due to
different scales, and the certified accuracy is computed over the certified radius
of 500 images randomly chosen in the test set for both CIFAR10 and ImageNet.

The results are shown in Table 4 and 5. Both on CIFAR10 and ImageNet, we
observe a significant improvement on the certified accuracy and robustness score.
Specifically, on CIFAR10, our robustness score outperforms the state-of-the-arts
by 25.34%, 32.44% and 38.78% against ℓ1, ℓ2 and ℓ∞ perturbations, respectively.
On ImageNet, our robustness score outperforms the state-of-the-arts by 8.75%,
4.55% and 14.81% against ℓ1, ℓ2 and ℓ∞ perturbations, respectively.

6 Related Work

Certified Defenses. They aim to derive the certified robustness of machine
learning classifiers against adversarial perturbations. Existing certified defenses
methods can be classified into leveraging Satisfiability Modulo Theories [47,4,19,31],
mixed integer-linear programming [8,20,3], linear programming [54,56], semidef-
inite programming [44,45], dual optimization [14,15], global/local Lipschitz con-
stant methods [22,50,2,9,25], abstract interpretation [21,42,48], and layer-wise
certification [42,48,23,53,61], etc. However, none of these methods is able to
scale to large models (e.g., deep neural networks) or is limited to specific type
of network architecture, e.g., ReLU based networks.

Randomized smoothing was recently proposed certified defenses [36,39,11,27,51]
that is scalable to large models and applicable to arbitrary classifiers. Lecuyer
et al. [36] proposed the first randomized smoothing-based certified defense via
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differential privacy [18]. Li et al. [39] proposed a stronger guarantee for Gaus-
sian noise using information theory. The first tight robustness guarantee against
l2-norm perturbation for Gaussian noise was developed by Cohen et al. [11].
After that, a series follow-up works have been proposed for other ℓp-norms, e.g.,
ℓ1-norm [49], ℓ0-norm [38,37,29], etc. However, all these methods are limited to
guarantee the robustness against only a specific ℓp-norm perturbation.

Universal Certified Defenses. More recently, several works [60,59] aim to
provide more universal certified robustness schemes for all ℓp-norms. Yang et al.
[59] proposed a level set method and a differential method to derive the upper
bound and lower bound of the certified radius, while the derivation is relying
on the case-by-case theoretical analysis. Zhang et al. [60] proposed a black-box
optimization scheme that automatically computes the certified radius, but the
solvable distribution is limited to ℓp-norm. Dvijotham et al. [16] proposes a
general certified defense based on the f -divergence, but fails to provide a tight
certification. Croce et al. [12] derived the certified radius for any ℓp-norm (p ≥ 1),
but the robustness guarantee can only be applied to ReLU classifiers. Our UniCR
framework can automate the robustness certification for any classifier against any
lp-norm perturbation with any noise PDF.

Certified Defenses with Optimized Noise PDFs/Distributions. Yang
et al. [59] proposed to use the Wulff Crystal theory [57] to find optimal noise
distributions. Zhang et al. [60] claimed that the optimal noise should have a more
central-concentrated distribution from the optimization perspective. However, no
existing works provide quantitative solutions to find optimal noise distributions.
We propose the C-Opt and I-Opt schemes to quantitatively optimize the noisy
PDF in our UniCR framework and provide better certified robustness. Table 1
summarizes the differences in all the closely-related works.

7 Conclusion

Building effective certified defenses for neural networks against adversarial per-
turbations have attracted significant interests recently. However, the state-of-the-
art methods lack universality to certify robustness. We propose the first random-
ized smoothing-based universal certified robustness approximation framework
against any ℓp perturbations with any continuous noise PDF. Extensive evalu-
ations on multiple image datasets demonstrate the effectiveness of our UniCR
framework and its advantages over the state-of-the-art certified defenses against
any ℓp perturbations.
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A Preliminary

We first briefly review the recent certified robustness scheme [11] for a general
classification problem by classifying data point in Rd to classes in Y. Given an
arbitrary base classifier f , it can be converted to a “smoothed” classifier [11] g
by adding isotropic Gaussian noise to the input x:

g(x) = argmax
c∈Y

P(f(x+ ϵ) = c), where ϵ ∼ N (0, σ2I) (6)

Lemma 1. (Neyman-Pearson Lemma) Let X and Y be random variables in
Rd with densities µX and µY . Let f : Rd → {0, 1} be a random or deterministic
function. Then:

(1) If S = {z ∈ Rd : µY (z)
µX(z) ≤ t} for some t > 0 and P(f(X) = 1) ≥ P(X ∈

S), then P(f(Y ) = 1) ≥ P(Y ∈ S);

(2) If S = {z ∈ Rd : µY (z)
µX(z) ≥ t} for some t > 0 and P(f(X) = 1) ≤ P(X ∈

S), then P(f(Y ) = 1) ≤ P(Y ∈ S).

With Lemma 1, Cohen [11] derives the certified radius when the classifier is
smoothed with the Gaussian noise. As shown in Theorem 2, when the smoothed
classifier’s prediction probabilities satisfy Equation (7), the prediction result is
guaranteed to be the most probable class cA when the perturbation is limited
within a radius R in ℓ2-norm.

Theorem 2. (Randomized Smoothing with Gaussian Noise [11]) Let
f : Rd → Y be any deterministic or random function, and let ϵ ∼ N (0, σ2I).
Denote g as the smoothed classifier in Equation (6), and the most probable and
the second probable classes as cA, cB ∈ Y, respectively. If the lower bound of the
class cA’s prediction probability pA ∈ [0, 1], and the upper bound of the class cB’s
prediction probability pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (7)

Then g(x+ δ) = cA for all ||δ||2 ≤ R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (8)

where Φ−1 is the inverse of the standard Gaussian CDF.

Proof. See detailed proof in [11].

B Proofs

B.1 Proof of Theorem 1

Proof. We prove the theorem based on Neyman-Pearson Lemma (Lemma 1).
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Let x := x0 + ϵ be the random variable that follows any continuous distri-
bution. δ be the perturbation added to the input image. y = x0 + ϵ + δ is the
perturbed random variable. Thus, x and y are random variables with densities
µx and µy. Define sets:

A := {z :
µy(z)

µx(z)
≤ tA} (9)

B := {z :
µy(z)

µx(z)
≥ tB} (10)

where tA and tB are picked to suffice:

P(x ∈ A) = pA (11)

P(x ∈ B) = pB (12)

Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ ϵ) = c) (13)

Since P(f(x + ϵ) = cA) ≥ pA = P(x ∈ A) and A = {z : µY (z)
µX(z) ≤ tA}, using

Neyman-Pearson Lemma (Lemma 1), we have:

P(f(y) = cA) ≥ P(y ∈ A) (14)

Similarly, we have:

P(f(y) = cB) ≤ P(y ∈ B) (15)

To guarantee P(f(y) = cA) ≥ P(f(y) = cB), we need

P(f(y) = cA) ≥ P(y ∈ A) ≥ P(y ∈ B) ≥ P(f(y) = cB) (16)

In summary, to guarantee the certified robustness on class A, Equation (9),
(10), (11), (12), (16) must be satisfied. The conditions can be rewritten as:

P(
µy(x)

µx(x)
≤ tA) = pA (17)

P(
µy(x)

µx(x)
≥ tB) = pB (18)

P(
µy(y)

µx(y)
≤ tA) ≥ P(

µy(y)

µx(y)
≥ tB) (19)

where Equation (17) is from Equation (9) and Equation (11), Equation (18)
is from Equation (10) and Equation (12), and Equation (19) is from Equation
(16).
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Considering the relationship y = x+ δ, we can derive:

µy(x) = µx(x− δ) (20)

µx(y) = µx(x+ δ) (21)

µy(y) = µx(y − δ) = µx(x) (22)

Thus, the conditions (11), (12) and (13) can be rewritten as:

P(
µx(x− δ)

µx(x)
≤ tA) = pA (23)

P(
µx(x− δ)

µx(x)
≥ tB) = pB (24)

P(
µx(x)

µx(x+ δ)
≤ tA) ≥ P(

µx(x)

µx(x+ δ)
≥ tB) (25)

Any perturbation δ satisfying these conditions will not fool the smoothed
classifier. In this case, these conditions construct a robustness area in δ space.
If we want to find a ℓp ball within which the prediction is constant, the lp ball
should be in this robustness area. Therefore, the certified radii is the minimum
||δ||p on the boundary of this robustness area. In this case, the ℓp ball is exactly
the maximum inscribed ball in the robustness area. Also, x can be replace by ϵ
in these conditions since it is in the fraction, which means the optimization is
independent to the input if given pA and pB . Therefore, the whole optimization
problem is summarized as:

minimize
δ

R = ||δ||p

subject to P(
µx(x− δ)

µx(x)
≤ tA) = pA,

P(
µx(x− δ)

µx(x)
≥ tB) = pB ,

P(
µx(x)

µx(x+ δ)
≤ tA) = P(

µx(x)

µx(x+ δ)
≥ tB)

If the noise is isotropic, each dimension is independent,

µx(x) =

d∏
i=1

µx(xj) (26)

Thus, conditions for the isotropic noise can be rewritten as:

P(
d∏

j=1

µx(xj − δj)

µx(xj)
≤ tA) = pA (27)
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P(
d∏

j=1

µx(xj − δj)

µx(xj)
≥ tB) = pB (28)

P(
d∏

j=1

µx(xj)

µx(xj + δj)
≤ tA) = P(

d∏
j=1

µx(xj)

µx(xj + δj)
≥ tB) (29)

Thus, this completes the proof.

B.2 Binary Case for Theorem 2

Theorem 3. (Universal Certified Robustness (Binary Case)) Let f :
Rd → Y be any deterministic or random function, and let ϵ follows any con-
tinuous distribution. Let g be defined as in (1). Suppose the most probable class
cA ∈ Y and the lower bound of the probability pA satisfy:

P(f + ϵ) = cA ≥ pA ≥ 1

2
(30)

Then g(x+ δ) = cA for all ||δ||p ≤ R, where R is given by the optimization:

minimize
δ

R = ||δ||p

subject to P(
µx(x− δ)

µx(x)
≤ tA) = pA,

P(
µx(x)

µx(x+ δ)
≤ tA) =

1

2

B.3 UniCR (Binary Case)

Similar to the binary case of Theorem 1, the binary case of the two-phase opti-
mization can be easily derived:

R = ||λδ||p, where δ ∈ argmin
δ

||λδ||p

s.t. λ = argmin
λ

|K|

P(
µx(x− λδ)

µx(x)
≤ tA) = pA

K = P(
µx(x)

µx(x+ λδ)
≤ tA)−

1

2

pA ≥ 1

2
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B.4 UniCR Bound

The certified radius R approximated by the two-phase optimization is tight
if achieving the optimality. Under this assumption, we analysis the confidence
bound for the certification. We follow [11] to compute the probabilities pA and
pB using Monte Carlo method with sample number n. The confidence is 1−α0,

where pA >= α
1/n
0 . To estimate the auxiliary parameters tA and tB , we use

Dvoretzky–Kiefer–Wolfowitz inequality [17] to bound the CDFs of the random

variables µx(x−λδ)
µx(x)

and µx(x)
µx(x+λδ) , then determine the tA and tB using Algorithm

1.

Lemma 2. (Dvoretzky–Kiefer–Wolfowitz inequality(restate)) Let X1, X2, ..., Xn

be real-valued independent and identically distributed random variables with cu-
mulative distribution function F (·), where n ∈ N.Let Fn denotes the associated
empirical distribution function defined by

Fn(x) =
1

n

n∑
i=1

1{Xi<=x}, x ∈ R (31)

The Dvoretzky–Kiefer–Wolfowitz inequality bounds the probability that the
random function Fn differs from F by more than a given constant ∆ ∈ R+ :

P(sup
x∈R

|Fn(x)− F (x)| > ∆) ≤ 2e−2n∆2

(32)

We use the Lemma 2 to estimate the CDFs in algorithm 1. In condition 4,
we need to estimate 4 probabilities with confidence 1 − 2e−2n∆2

as well as the
pA and pB with confidence 1 − α0. Therefore, the confidence that deriving the
correct radius is at least (1 − α0)

2(1 − 2e−2n∆2

)4. In Figure 9, we show the
confidence on a varying number of samples when ∆ = 0.1 and α0 = 0.999. As
the number of samples increases to around 400 (all our experiments use more
than 400 samples), our confidence is very close to Cohen’s confidence [11]. Thus,
the confidence is nearly 1 in all our experiments.

B.5 Optimization Convergence

We analysis the convergence of the two-phase optimization and the certification
accuracy in this section. On one hand, the optimality of the scalar optimization
can be asymptotically achieved by binary search. On the other hand, it is hard
to find the minimum ||λδ||p in the highly-dimensional space, but some special
symmetry in the direction of δ (e.g., spherical symmetry that is also found in
[60,59]), can help approximate the certified radius. The detailed algorithms are
presented in Section 3.1. The defense performance of such universally approx-
imated certified robustness against different real-world attacks is the same as
certified robustness (as shown in Appendix D.2). Thus, such negligible approxi-
mation error is close to 0, but result in many significant new benefits in return.
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Fig. 9. Confidence vs. number of Monte Carlo samples.

C Algorithms

C.1 Computing tA and tB

We present the algorithm to compute the pA and pB in Algorithm 1.

Algorithm 1 Computing tA and tB
Input: Lower bound of the probabilities, pA; upper bound of the probabilities, pB ;

perturbation scalar, λ; perturbation, δ; noise PDF, µx; number of samples in the
Monte Carlo method, n

Output: The auxiliary parameters, tA and tB
1: Sample n noise ϵ ∈ Rn×d from a discrete version of PDF.
2: Calculate µx(x−λδ)

µx(x)
using these n samples of noise, µx, λ and δ

3: Estimate the CDF Φ of µx(x−λδ)
µx(x)

using Monte Carlo method

4: return tA = Φ−1(pA) and tB = Φ−1(pB), with inverse CDF Φ

C.2 Scalar Optimization

We use the binary search to find a scale factor that minimizes |K| (the distance
between δ and the robustness boundary). When K = 0, the perturbation δ is
exactly on the robustness boundary. Fixing the direction of δ, we find two scalars
such that K > 0 and K < 0. Specifically, we start from a scalar λa and compute
K. If K > 0, then the scaled perturbation λaδ is within the robustness boundary,
thus we enlarge the scalar to find a λb such that K < 0 and vice versa. After
that, we iteratively compute the K using λ = 1

2 (λa + λb): if K > 0, we let
λa = λ; otherwise, we let λb = λ. We repeat this iteration until K is less than
a threshold or the number of iterations is sufficiently large. The procedures are
summarized in Algorithm 2.
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Algorithm 2 Scalar Optimization

Input: Lower bound of the probabilities, pA; upper bound of the probabilities, pB ;
perturbation scalar, λ; perturbation, δ; noise PDF, µx; number of samples in Monte
Carlo method, n; threshold for K, Km; number of iterations for binary search, N

Output: The scalar λ that minimizes |K|
1: Find initial scalar λa and λb such that K > 0 and K < 0
2: λ = (λa + λb)/2
3: Compute K using λ
4: while N > 0 and |K| > Km do
5: if K > 0 then
6: λa = λ
7: else
8: λb = λ
9: λ = (λa + λb)/2
10: Compute K using λ
11: N=N-1
12: return λ

C.3 Direction Optimization

We show how to initialize the positions for different ℓp norms in PSO. Since
some noise follows PDFs with symmetry [60,59], we set the initial position of
particles by considering this, e.g., setting the initial positions w.r.t. ℓp for p ∈ R+

as [0, ..., 0, a, 0, ..., 0] and the initial positions w.r.t. ℓ∞ as [a, a, a, ..., a], where
a is a small random number. Although the search space is highly-dimensional,
empirical results show that the radius given by PSO can accurately approximate
the theoretical radius given by other methods, e.g., Cohen’s [11] (see Figure 4).
Notice that, for more complicated PDFs without symmetry (which is indeed
difficult for deriving the certified radius), PSO can also approximate the certified
radius with more particles and iterations.

C.4 Hill-climbing algorithm for I-OPT

The Hill-climbing algorithm is summarized in Algorithm 3.

D More Experimental Results

D.1 Metrics

We show the illustration of Robustness Score in Figure. 10

D.2 Defense against Real Attacks

We evaluate our UniCR’s defense accuracy against a diverse set of state-of-
the-art attacks, including universal attacks [10], white-box attacks [13,55], and
black-box attacks [1,6]. We compare UniCR with other state-of-the-art certified
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Algorithm 3 I-OPT with Hill Climbing

Input: Input data, x; PDF of noise distribution, µx; universally approximated certi-
fied robustness, UniCR(·); initial hyper-parameters α; optimization range of hyper-
parameters, [L,H]; optimization step of hyper-parameters, S

Output: The optimal hyper-parameters, αoptimal

1: Initialize the certified radius R0 = UniCR(x, µ(α))
2: For each hyper-parameter αi in α:
3: if Li < αi + Si < Hi then
4: R′ = UniCR(x, µ(α|αi = αi + Si))
5: if R′ > R0 then
6: α is updated with αi = αi + Si

7: R0 = R′

8: else if Li < αi − Si < Hi then
9: R′ = UniCR(x, µ(α|αi = αi − Si))
10: R0 = R′

11: if R′ > R then
12: α is updated with αi = αi − Si

13: R0 = R′

14: else
15: break
16: else
17: break
18: return αoptimal = α
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Fig. 10. An example of the Robustness Score.
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schemes [59,11,49] against ℓ1, ℓ2 and ℓ∞ perturbations. The certified radius R
for each image in the test set (10, 000 images in total) are computed beforehand,
and the perturbation generation is constrained by ||δ||p = R for all the attack
methods. We define the defense accuracy as the rate that the smoothed classifier
can successfully defend against the perturbations with the ℓp size identical to
the the certified radius:

accd = E||δ||p=R[

∑
g(x+ δ) = cA

N
] (33)

where cA = g(x), N is the total test number. In this defense study, we use 500
samples for both Monte Carlo method and testing.

Table 6 shows the defense accuracy on the smoothed classifier. The at-
tack with ”∗” is re-scaled to the required norm (perturbation size R) based on
their perturbation formats. UniCR universally provides a 100% defense accuracy
against all the ℓ1, ℓ2 and ℓ∞ perturbations generated by all the state-of-the-art
attacks. These results validate our universally approximated certified robustness
ensures the same defense performance as certified robustness in practice.

Table 6. Defense against real attacks on CIFAR10 (results on MNIST & ImageNet
are similar and not included due to space limit).

Defense Accuracy (%) Gaussian* Procedural* [10] Auto-PGD [13] Wasserstein* [55] Square* [1] HSJ* [6]
Teng’s [49] ℓ1-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ1-norm R 100.00 100.00 100.00 100.00 100.00 100.00
Cohen’s [11] ℓ2-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ2-norm R 100.00 100.00 100.00 100.00 100.00 100.00
Yang’s [59] ℓ∞-norm R 100.00 100.00 100.00 100.00 100.00 100.00

Our ℓ∞-norm R 100.00 100.00 100.00 100.00 100.00 100.00

D.3 List of PDFs

The PDFs used in our experimental are summarized in Table 7.

Table 7. List of noise distributions.

Distribution Probability Density Function

Gaussian ∝ e−|x/α|2

Laplace ∝ e−|x/α|

Hyperbolic Secant ∝ sech(|x/α|)
General Normal ∝ e−|x/α|β

Cauthy ∝ α2

x2+α2

Pareto ∝ 1

(1+|x/α|)β+1

Laplace-Gaussian Mix. ∝ βe−|x/α|1 + (1 − β)e−|x/α|2

Exponential Mix. ∝ e−β|x/α|1−(1−β)|x/α|2
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D.4 Efficiency for Radius Derivation

We show the runime of our algorithms on deriving the certified radius for the
inputs with various input dimensions in Figure 11. For the common input di-
mensions, e.g., 24× 24 for MNIST, 3× 32× 32 for CIFAR10, and 3× 224× 224
for ImageNet, it takes less than 10 seconds for certifying an image on average.
Comparing with the theoretical certified radius deriving, our method’s running
time is undoubtedly larger since their radius is pre-derived. However, with the
significant benefits on the universality and the automatically deriving, we believe
the cost of the extra running time is worthwhile and acceptable in practice.
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Fig. 11. Runtime of UniCR vs. input sizes (with RTX3080 GPU).
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Existing methods [11,49] usually focus on the certified radius in a specific
norm, e.g., ℓ1, ℓ2 or ℓ∞ norms. Some methods [60,59] provide certified robust-
ness theories for multiple norms but specific settings are usually needed for
deriving the certified radii in different norms. None of the existing methods can
automatically compute the certified radius in any ℓp norm. In this section, we
show our UniCR can automatically approximate the certified radii for various p,
in which p is a real number greater than 0.

In the experiments, we set the probability pA = 0.9 and draw the lines
of certified radius w.r.t. different p for p > 0. We show the results computed
with different noise distributions in Figure 12. We observe that when p ∈ (0, 2],
the certified radius for different p are approximately identical. This finding also
matches the theoretical results in Yang et al. [59], in which the certified radii in
ℓ1 and ℓ2 norm are exactly the same for multiple distributions. When p > 2, we
observe that the certified radius decreases as p increases.

D.6 Evaluations on Complicated PDFs

We provide a fine-grained evaluation on the complicated distributions [43], e.g.,
General Normal, Laplace-Gaussian Mixture, and Exponential Mixture noises
with various β. It shows that the Gaussian (i.e., β = 2 for General Normal, β = 0
for Laplace-Gaussian Mixture and Exponential Mixture) is the optimal noise in
these β setting. We also observe the “crash” on Laplace-based distributions when
pA is small.

D.7 Certification on Non-Smoothed Classifier

Table 8. Certified accuracy on standard classifier.

radius R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Yang’s [59] vs. ℓ1-norm 10.6 10.4 10.4 9.8 8.8 8.2 5.4 2.2 1.0

Ours vs. ℓ1-norm 98.8 47.0 22.4 17.8 13.8 10.2 7.0 3.8 1.0
Cohen’s [11] vs. ℓ2-norm 10.6 10.4 10.4 9.6 8.8 8.2 5.6 2.2 1.2

Ours vs. ℓ2-norm 98.8 46.0 22.4 17.6 13.8 9.8 7.0 3.8 1.2
Yang’s [59] vs. ℓ∞-norm (at R/255) 10.6 10.6 10.6 10.4 10.4 10.4 10.4 10.4 10.4

Ours vs. ℓ∞-norm (at R/255) 98.6 92.4 69.4 61.6 53.6 46.0 37.8 27.4 24.4

Besides certifying inputs with the smoothed classifier, our input noise opti-
mization (I-OPT) can certify input with a standard classifier without degrading
the classifier accuracy on clean data (on the contrary, existing works have to
trade off such accuracy for certified defenses).

Specifically, since our I-OPT allows the noise for the input certification to be
different from the noise used in training, a special case of the training noise is
no noise (σ = 0). This means that we can certify a naturally-trained classifier
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Fig. 13. pA-R curves of General Normal, Laplace-Gaussian Mixture, and Exponential
Mixture noise with a varying β.

(standard classifier). This provides an obvious benefit that the classifier can still
execute normal classification on clean data with high accuracy since the standard
classifier is trained without noise. Also, with I-OPT, we can tune the noise for the
input to maintain the prediction accuracy. Thus, any classifier can be certifiably
protected against perturbations without degrading the general performance on
clean data.

To maintain the performance on standard classification, we add a condition
while performing I-OPT:

g(x+ δ) = f(x) (34)

We show this application on a standard ResNet110 classifier trained on CI-
FAR10 (see Table 8). For the baselines, we use Gaussian noise (σ = 0.35) and
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its corresponding theoretical radius [59,11] for certification. Our method uses
I-OPT with General Normal noise and initializes it with the same σ. While ap-
proximating the certified radius with UniCR, we generate 4, 000 samples with
the Monte Carlo method on CIFAR10.

The table shows that over 98.6% of the inputs are certified by our method
with a radius R > 0. This means that over 98.6% of the samples are certifiably
protected while only 10.6% of inputs are certified by the baselines, which is nearly
the accuracy by random guessing. This significant improvement emerges since the
I-OPT could optimize the noise PDF for each input even though the classifier is
not trained with noise (non-smoothed classifier). Although the certified radii are
low compared to smoothly-trained classifiers, it provides a certifiable protection
on perturbed data while maintaining the high accuracy for classifying clean data.

E Visual Examples of I-OPT

We present some examples of I-OPT on the ImageNet dataset against ℓ1, ℓ2
and ℓ∞ perturbations, respectively (see Figure 14). In the first case (ℓ1 pertur-
bations), without executing the I-OPT, our UniCR certifies the input with a
radius R = 1.24. Our I-OPT optimizes the distribution as the right-most figure
shows, then the certified radius is improved to 1.48 with our UniCR. Similarly,
in the rest cases, we show I-OPT can improve the certified radius significantly
by optimizing the noise distribution. Especially, we improve the radius from 0.35
to 1.30 in the second case.

F Discussions

Universal Certified Robustness. It might be impractical to make a univer-
sal framework satisfy all the theoretical conditions w.r.t. all ℓp perturbations,
especially p can be any positive real number. Thus, we admit that UniCR may
not strictly satisfy certified robustness all the time due to the approximated op-
timization. However, extensive empirical results confirm that our derived radii
highly approximate the theoretical certified radii against different ℓp perturba-
tions. In addition, the defense performance against real attacks also illustrate
that our method is as reliable as different theoretical certified radii. We believe
that with the negligible error in practice, UniCR can be deployed as a universal
framework to significantly ease the process of achieving certified robustness in
different scenarios.

Certifying Perturbed Data with Randomized Smoothing. Traditional
randomized smoothing usually assumes that the input is clean and empirical
defenses [41,26] are not applied, if the input data is perturbed before certification,
then certification in I-OPT might be inaccurate. Indeed, the certification in
traditional randomized smoothing (e.g., [11]) methods also depend on the inputs
(since pA is different for different inputs), they might be inaccurate if the input
data is perturbed, either. Thus, randomized smoothing based approaches focus
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Fig. 14. Example images of applying I-OPT (based on UniCR) for smoothed classifier
against different ℓp perturbations on the ImageNet dataset. From the left to right, the
first figure shows the original image. The second and third figures show the smoothed
image without I-OPT and with I-OPT, respectively. The fourth figure shows the cor-
responding distributions before/after I-OPT.
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on certifying clean inputs rather than correcting perturbed inputs. We will study
this interesting problem on certifying both clean and perturbed inputs in the
future.

Can existing methods adopt noise optimization? A question here is that
if the noise optimization can improve the certified radius, can the theoretical
methods provide personalized randomization for each input? The personalized
randomization is actually not adaptable in the theoretical methods since they
cannot automatically derive the certified radius for different noise distributions,
especially for uncommon distributions, e.g., e−|x/0.5|1.5 . Instead, our UniCR can
automatically derive the certified radius for any distribution within the contin-
uous parameter space.

Extensions. We evaluate our UniCR on the image classification. Indeed, our
UniCR is a general method that can be directly applied to other tasks, e.g.,
video classification [40,58], graph learning (e.g., node/graph classification [52]
and community detection [28]), and natural language processing [30].
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