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Abstract
Randomized smoothing has achieved great suc-
cess for certified robustness against adversarial
perturbations. Given any arbitrary classifier, ran-
domized smoothing can guarantee the classifier’s
prediction over the perturbed input with provable
robustness bound by injecting noise into the clas-
sifier. However, all of the existing methods rely
on fixed i.i.d. probability distribution to generate
noise for all dimensions of the data (e.g., all the
pixels in an image), which ignores the heterogene-
ity of inputs and data dimensions. Thus, existing
randomized smoothing methods cannot provide
optimal protection for all the inputs. To address
this limitation, we propose the first anisotropic
randomized smoothing method which ensures
provable robustness guarantee based on pixel-
wise noise distributions. Also, we design a novel
CNN-based noise generator to efficiently fine-
tune the pixel-wise noise distributions for all the
pixels in each input. Experimental results demon-
strate that our method significantly outperforms
the state-of-the-art randomized smoothing meth-
ods.

1. Introduction
Deep learning (DL) models have been proven to be vul-
nerable to well-crafted adversarial examples (Goodfellow
et al., 2015; Carlini & Wagner, 2017). For example, ad-
versaries can generate minor malicious perturbations either
with or without access to the DL models (in white-box or
blackbox settings). Once injected into the input of the DL
models, it could trigger misclassification or misrecognition.
These successful adversarial attacks are detrimental to DL
models in real-world deployments and may cause severe
consequences, e.g., car accidents in autonomous driving
(Sun et al., 2020), misdiagnosis in the auto-diagnosis (Ma
et al., 2021), and misrecognizing faces (Dong et al., 2019).

To protect the DL models against adversarial attacks, em-
pirical defense methods have been proposed in the past
decade. Through training more robust models by including
adversarial examples in the training set (Madry et al., 2018;
Shafahi et al., 2019), destroying the malicious perturbation

(Xu et al., 2017; Xie et al., 2018) or regularizing the fea-
tures (Xie et al., 2019a; Yang et al., 2021), these empirical
methods have shown effective defenses against the adver-
sarial attacks. However, given any new powerful defense
method, stronger attacks (Athalye et al., 2018; Croce &
Hein, 2020; Xie et al., 2019b) will be designed to break the
defenses. None of the empirical defenses can fully ensure
the robustness of DL models all the time. Recently, certified
robustness methods (Wong & Kolter, 2018; Cohen et al.,
2019; Lecuyer et al., 2019) were proposed to provide prov-
able guarantees on the robustness of the DL models. They
aim to certify whether potential adversarial perturbations
can result in misclassification or not. Once certified, it guar-
antees that any perturbation cannot fool the classifier if it is
within a boundary. Typically, this boundary is given by an
`p-norm ball, e.g., `1, `2, or `∞.

The randomized smoothing (RS) methods (Lecuyer et al.,
2019; Teng et al., 2020; Cohen et al., 2019) provide certified
robustness on any arbitrary classifiers (compared to tradi-
tional certified methods on specific classifiers, e.g, ReLU
based neural networks). By injecting the noises to the input,
RS turns any arbitrary classifier into a smoothed classifier,
then the robustness of the smoothed classifier can be guar-
anteed if the perturbation is within a theoretical bound in
`p-norm, i.e., certified radius. For example, (Cohen et al.,
2019) derives a tight `2 certified radius for Gaussian noise.
However, existing RS theories (Cohen et al., 2019; Teng
et al., 2020; Yang et al., 2020; Zhang et al., 2020) can only
derive the certified radii for fixed i.i.d. noises, e.g., Gaus-
sian noise (Cohen et al., 2019) or Laplace noise (Teng et al.,
2020), which applies identical distribution to different pixels
and inputs. Thus, existing methods ignore the heterogene-
ity of the inputs and data dimensions, and cannot provide
optimal protection for all the inputs.

To pursue optimal protection for every input, we propose the
first randomized smoothing theory for anisotropic noise (to
our best knowledge), which applies different distributions
to generate noise for different data dimensions (e.g., image
pixels). In this paper, we consider Gaussian noise as a
use case to introduce anisotropic randomized smoothing
(other noise can also achieve it with similar theories as
discussed in Section 7). We also propose a Noise Generator
to generate the pixel-wise noise distributions for all the
pixels in each input. Specifically, a tight certified radius
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Figure 1. Evaluation of the smoothed classifier at an input x. The decision regions of the base classifier f are represented in different
colors. The dashed lines are the level sets of the noise distribution adding to the input. The left figure illustrates the randomized smoothing
with isotropic Gaussian noise N (0, σ2I) in (Cohen et al., 2019) whereas the right figure illustrates the randomized smoothing with
anisotropic Gaussian noiseN (µ,Σ). The middle figure shows the prediction probabilities of the input over the noises.

is derived in our theory when all the pixels are smoothed
by Gaussian noise with different means and variances. The
Noise Generator uses a convolution neural network (CNN)
to efficiently fine-tune the noise mean and variance for each
pixel in randomized smoothing.

Compared to the traditional RS methods (Cohen et al., 2019;
Teng et al., 2020; Zhang et al., 2020), our certified defense
provides the following new significant benefits:

• Higher Certified Accuracy. We train the Noise Gen-
erator to generate the optimal means for the noises to
be added to the input. The noise with proper means can
move the input representation to the center of its class,
e.g., some input located near the decision boundary can
be adjusted to the class representation center by adding
the noise mean towards the center (see Figure 1 for il-
lustration). This improves the certified accuracy for as
high as 32.9% on CIFAR10 and 20.6% on ImageNet.

• Larger Certified Radii. We train the Noise Generator
to also generate the optimal variance for the noises
to be added to the input. Different from the isotropic
Gaussian noise, we generate different variances for
different pixels to keep the noisy sample within the de-
cision boundary (see Figure 1 for illustration). Thanks
to the optimal means and variances, our smoothed clas-
sifier maintains a higher prediction accuracy over the
same noise than the traditional smoothed classifier,
which leads to larger certified radii. When certified
accuracy is fixed at 20%, the certified radius can be
improved from 1.10 to 2.96 on CIFAR10 and from
1.92 to 3.73 on ImageNet.

• Enhanced Robustness against Pre-Perturbing At-
tack. We also study a new problem in randomized
smoothing: what happens if the input is perturbed be-

fore certification with noise? Indeed, if the input is
maliciously perturbed before injecting the noise for
certification, the smoothed classifier’s prediction could
be guaranteed to be consistently wrong (certifying the
class label of the perturbed input). We show that our
method is more robust than the traditional RS methods
against such adversarial attacks.

2. Related Work
In this paper, all the defense methods are proposed against
the evasion attacks to machine learning models. They aim
to make the model correctly predict results on perturbed
inputs. Typically, there are two types of defense methods:
empirical defenses and certified defenses. The empirical
defenses empirically protect the models while the certified
defenses ensure the robustness of the models with provable
guarantees.

Empirical Defenses. In the past decade, empirical defenses
have been proposed to protect the machine learning mod-
els in different ways, e.g., training more robust models by
including adversarial examples in the training data (Madry
et al., 2018; Shafahi et al., 2019; Tramer et al., 2018; Wong
et al., 2019), pre-processing the inputs to destroy the ma-
licious patterns in the perturbation (Liu et al., 2019; Xu
et al., 2017; Xie et al., 2019a; Samangouei et al., 2018),
regularizing the features in the model to eliminate the ef-
fects of perturbations (Xie et al., 2018; Yang et al., 2021)
or detecting the adversarial examples before fed into the
model (Lu et al., 2017; Metzen et al., 2017; Lee et al., 2018).
Although empirical evidence has shown that these methods
can efficiently defend against adversarial attacks, none of
them can guarantee model robustness against adversarial
attacks.

Certified Defenses. The certified defenses were proposed
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to guarantee robustness against adversarial perturbations. In
general, the robustness can be guaranteed if the perturba-
tions are within a boundary, e.g., a `1 , `2 or `∞ ball of radius
R. The existing certified defenses can be roughly divided
into two categories: exact certified defenses and conserva-
tive certified defenses. The exact certified defenses usually
leverage satisfiability modulo theories (Katz et al., 2017;
Carlini et al., 2017; Ehlers, 2017; Huang et al., 2017b) or
mixed-integer linear programming (Cheng et al., 2017; Lo-
muscio & Maganti, 2017; Fischetti & Jo, 2018; Bunel et al.,
2018) to guarantee whether there exists a perturbation within
radius R or not. The conservative certified defenses provide
conservative guarantee on the robustness by global/local
Lipschitz constant methods (Gouk et al., 2021; Tsuzuku
et al., 2018; Anil et al., 2019; Cissé et al., 2017; Hein &
Andriushchenko, 2017), optimization methods (Wong &
Kolter, 2018; Wong et al., 2018; Raghunathan et al., 2018;
Dvijotham et al., 2018) or layer-by-layer certifying (Mirman
et al., 2018; Singh et al., 2018; Gowal et al., 2018; Weng
et al., 2018; Zhang et al., 2018a). In certain circumstances,
it cannot provide the guarantee even when the malicious
perturbation exists. However, the exact certified defenses
cannot be scaled to large-size networks, and the conservative
certified defenses usually assume specific types of networks,
e.g., ReLU based networks. None of these schemes can
provide certified robustness to any arbitrary classifiers until
the randomized smoothing was proposed.

Randomized Smoothing. The randomized smoothing was
first studied by Lecuyer et al. (Lecuyer et al., 2019), where a
loose theoretical bound for the perturbation is derived using
Differential Privacy methods (Dwork, 2006; 2008). The
first tight guarantee was proposed by Cohen et al. (Cohen
et al., 2019), in which, any arbitrary classifier can be turned
into a smoothed classifier by adding Gaussian noise to the
data. The smoothed classifier’s prediction can be guaran-
teed to be consistent within a certified radius in `2-norm,
which is tightly derived. Following the track of randomized
smoothing, a series of methods have been proposed to guar-
antee the robustness against different `p perturbations with
different noise distributions, e.g., Teng et al. (Teng et al.,
2020) derives the certified radius for `1 perturbations with
Laplace noise, and Lee et al. (Lee et al., 2019) derives the
certified radius against `0 perturbations with uniform noise.
Some methods propose unified theories to guarantee the
robustness against a diverse set of `p perturbations with dif-
ferent noises. For example, Zhang et al. (Zhang et al., 2020)
propose a framework from the optimization perspective to
certify the robustness against `1, `2 and `∞ perturbations
with special noise distributions. Yang et al. (Yang et al.,
2020) propose two different methods, e.g., level set method
and differential methods, that can derive the upper bound
and the lower bound of the certified radius in different norms
for a wide range of distributions. However, all the existing

randomized smoothing methods add noise drawn from a
fixed distribution, e.g., Gaussian or Laplace, to all the inputs
and all dimensions of each input (e.g., all the pixels on an
image). This ignores the heterogeneity of inputs and even
the pixels. Thus, they cannot provide the optimal protection
for every input and pixel.

Therefore, we establish the first randomized smoothing
method based on anisotropic noise.

3. Isotropic Randomized Smoothing
We first review the randomized smoothing with isotropic
Gaussian noise (Cohen et al., 2019).

We study the classification from Rd to classes Y . Given
an arbitrary base classifier f , randomized smoothing is a
method that can turn the base classifier into a “smoothed”
classifier g by injecting noise into the input. The smoothed
classifier predicts the top-1 class w.r.t. to the input x over the
noise. The randomized smoothing in Cohen et al. (Cohen
et al., 2019) is formally defined as:

g(x) = arg max
c∈Y

P(f(x+ ε) = c), ε ∼ N (0, σ2I) (1)

The injected noise ε follows an independent isotropic Gaus-
sian noise N (0, σ2I). Also, the mean of the Gaussian noise
is set to be 0. Thus, the randomized smoothing proposed by
(Cohen et al., 2019) adds noise to all the dimensions of the
inputs with identical variance and zero-mean.

Based on the smoothed classifier g, the top-1 class is denoted
as cA ∈ Y , the second probable class is denoted as cB ∈ Y ,
and the corresponding lower bound and upper bound of
the class probabilities are denoted as pA and pB . Cohen
et al. (Cohen et al., 2019) derives the first tight bound of
the certified radius with the isotropic Gaussian noise in
Theorem 3.1.

Theorem 3.1 (Randomized Smoothing with Isotropic
Gaussian Noise (Cohen et al., 2019)). Let f : Rd → Y
be any deterministic or random function, and let ε ∼
N (0, σ2I). Define g as in Eq. (1). For a specific x ∈ Rd,
there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

P(f(x+ ε) = c) (2)

Then g(x+ δ) = cA for all ||δ||2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (3)

where δ denotes the perturbation.

Proof. See detailed proof in (Cohen et al., 2019).
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Theorem 3.1 guarantees that the smoothed classifier will
consistently predict the most probable class when the per-
turbation is within the radius defined in Eq. (3) if pA and
pB satisfy the condition (2) in Theorem 3.1.

While certifying any arbitrary classifier, isotropic random-
ized smoothing applies an identical distribution to generate
the noise for all the dimensions, which may limit the de-
fense performance on all the pixels of different inputs. Thus,
it is desirable to extend the randomized smoothing to add
heterogeneous noise for different pixels (anisotropic).

However, there are two challenges on extending the isotropic
RS to anisotropic RS. First, anisotropic RS needs more com-
plicated theories on deriving the certified radius since the
noise follows different distributions on different dimensions.
Second, instead of simply adding noise with the same dis-
tribution to all the pixels, we need to fine-tune the noise
distribution for each pixel in the anisotropic RS. To address
these challenges, we propose a novel theory on anisotropic
RS in Section 4 and design a novel mechanism for finding
the optimal noise distribution for all the pixels in Section 5.

4. Anisotropic Randomized Smoothing
In this section, we propose the first anisotropic randomized
smoothing (ARS) theory with the tight certified radius. We
take the Gaussian noise as an example to illustrate how to
extend the isotropic randomized smoothing to anisotropic
randomized smoothing, while other noise can be also readily
extended for ARS using similar procedures. Specifically, we
also theoretically derive the certified radius for anisotropic
Laplace noise in Section 7 as an extension.

For the Gaussian noise, we first extend the smoothed clas-
sifier in Eq. (4), and then provide a tight guarantee on its
robustness with the anisotropic noise in Theorem 4.1.

g′(x) = arg max
c∈Y

P(f(x+ ε) = c), ε ∼ N (µ,Σ) (4)

where the mean of the Gaussian noise is defined as µ =
[µ1, µ2, ..., µd], and the variance of the Gaussian noise is
defined as Σ = diag(σ2

1 , σ
2
2 , ..., σ

2
d).

Theorem 4.1 (Randomized Smoothing with Anisotropic
Gaussian Noise). Let f : Rd → Y be any deterministic
or random function, and let ε ∼ N (µ,Σ). Let g′ be defined
as in Eq. (4). Suppose that for a specific x ∈ Rd, there exist
cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

P(f(x+ ε) = c) (5)

Then g′(x+ δ) = cA for all ||δ||2 < R, where

R =
1

2
min{σi}(Φ−1(pA)− Φ−1(pB)) (6)

where σi denotes the variance on i-th dimension of the input,
δ denotes the perturbation.

Proof. See detailed proof in Appendix A.

Indeed, Theorem 4.1 can be considered as a generalized
form of Theorem 3.1 since when Σ = diag(σ2, σ2, ..., σ2)
and µ = 0, we have min{σi} = σ. Thus, our theorem
returns the same certified radius as Theorem 3.1 in the same
setting.

In Theorem 4.1, we observe that the certified radius only
depends on the minimum variance over all the dimensions.
Thus, any larger variance in other dimensions would not
affect the certified radius. We will show that this provides
benefits on defending against the attacks to the randomized
smoothing in Section 6. When we certify the perturbed
inputs, the large noise will also smooth the perturbation so
that the adversarial effects can be reduced.

We also observe that the certified radius does not depend on
the mean of the Gaussian noise. However, a proper mean
of the noise may affect the smoothed classifier’s prediction
on the clean input, and further improve the certified radius
since it affects the pA and pB . We will show how to design
a mechanism to find a proper mean (besides the variances)
for the noise to improve the certified robustness.

We also present the binary case of Theorem 4.1 as below:

Theorem 4.2 (Binary Case). Let f : Rd → Y be any
deterministic or random function, and let ε ∼ N (µ,Σ).
Let g′ be defined as in Eq. (4). Suppose that for a specific
x ∈ Rd, there exist cA ∈ Y and pA such that:

P(f(x+ ε) = cA) ≥ pA ≥
1

2
(7)

Then g′(x+ δ) = cA for all ||δ||2 < R, where

R = min{σi}Φ−1(pA) (8)

Proof. See detailed proof in Appendix B.

5. Noise Generator
Our proposed ARS theory could certify the defenses for
randomized smoothing based on applying different means
and different variances to generate noise for different pixels.
However, how to design a new mechanism to fine-tune vari-
ance and mean for the noise distributions is a challenging
problem. Note that the optimal variances and means can be
different from input to input and from pixel to pixel. There-
fore, we leverage the CNNs to design a Noise Generator for
learning the mapping from the input to the optimal variances
and means, and generating the input-dependent variances
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Original Image

Mean Map

Variance Map

Anisotropic Noise

Image +Anisotropic Noise

Isotropic Noise

Image + Isotropic Noise

Figure 2. An example of anisotropic and isotropic noise. Left: The original image. Middle: The pixel-wise means and variances for
anisotropic Gaussian distribution generated by our Noise Generator, and the noise sample. Right: The noise sample generated with
isotropic Gaussian distribution of σ = 1.0.

and means for the certification (see Figure 2 for an example
of comparing the anisotropic and isotropic noises).

Specifically, in the training and the certification, the Noise
Generator takes the image as input and returns a variance
map as well as a mean map for the randomized smooth-
ing. Then, the base classifier will take the noisy images as
the input for training or classification. The framework is
summarized in Figure 3.

Noise 

Generator

Classifier 

Smoothing Loss

Mean Loss

Variance Loss

𝝁 𝚺

Figure 3. Framework. The noise generated by Noise Generator
will be added to the image for smoothed classifier training and
classification. We train the Noise Generator and the classifier
simultaneously with three losses.

Architecture. The Noise Generator learns the mapping
from the image to the variance and mean maps, which is sim-
ilar to the function of the neural networks in image transfor-
mation. Therefore, inspired by the image super-resolution
work (Zhang et al., 2018b), we also use the “dense blocks”
(Huang et al., 2017a) as the main architecture. It consists

of 4 convolution layers followed by leaky-ReLU (Xu et al.,
2015). In addition, some special designs are integrated into
the Noise Generator to fit our tasks (See Figure 4). First,
the output of the dense block is separated into two branches
to generate the mean map and variance map. Second, a
sigmoid layer is inserted before the mean and variance maps
to constrain the mean and variance values. Otherwise, the
training may not converge due to some extreme values in
the noise. Note that, our Noise Generator is a small network
(5-layer deep), so it can be plugged before any classifier
for customizing the noise distribution without consuming
too much computing resources (See Section 7 for detailed
discussion on running time).

𝝁

𝚺
Features Convolution Layer Sigmoid Layer

Figure 4. Architecture of Noise Generator.

Loss Functions. We train the Noise Generator and the base
classifier simultaneously. In the training, our goal is to
generate the optimal mean and variance maps. Specifically,
by fine-tuning the mean and variance, we aim to train the
classifier to predict the noisy image as accurately as possible
(large pA). Thus, we use the smoothing loss (Eq. 9) for
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training both the Noise Generator and the classifier.

Ls = −
N∑
k=1

yk log[ŷk(x+ ε, θf , θg)] (9)

where yk = 1 if the class k is the correct label of input x,
otherwise yk = 0. ŷk denotes the prediction of the base
classifier f on the input x perturbed by noise ε. θf and
θg denote the model parameters of classifier f and Noise
Generator, respectively.

Also, since the certified radius only depends on the mini-
mum variance, we only have constraints on the minimum
values in the variance map. Large variances can improve
the certified radius while they will degrade the prediction
accuracy since large noises may greatly distort the image. It
has been widely known that the variance tunes the trade-off
between the accuracy and the certified radius (Cohen et al.,
2019; Yang et al., 2020). In our case, it is the minimum
variance that tunes the trade-off. Therefore, similar to re-
cent works (Cohen et al., 2019), we constrain the minimum
variance to a certain level by the variance loss (Eq. 10).

Lv =

∣∣∣∣min{σi(x, θg)} − σ0
σ0

∣∣∣∣ (10)

where the σi(x) is the variance for dimension i of the input
x. σ0 denotes the variance target that the minimum variance
is trained to achieve. By minimizing the variance loss, we
aim to train the Noise Generator to generate a variance map
with the minimum value min{σ}i = σ0.

We also constrain the mean map generation with the mean
loss (Eq. (11)) by considering this: although the mean of
the noise will not affect the certified radius and can help
align the input to the representation center of its class, an
extremely large value of mean can distort the image which
would harm the prediction accuracy. Thus, the mean map
should be as small as possible.

Lm = ||µ(x, θg)||2 (11)

The training process is to minimize the total loss in Eq. (12)

min
θf ,θg

Ex∼D,ε∼N (µ,Σ)[αLs + βLv + γLm] (12)

where α, β, and γ are the weights of the three loss functions,
and D denotes the dataset.

Practical Algorithms. We follow Cohen et al. (Cohen
et al., 2019) to use the Monte Carlo algorithm for evaluating
g(x) and compute the certified robustness. Different from

Cohen et al. (Cohen et al., 2019), our noise distributions
are generated by Noise Generator for each input. Our al-
gorithms for certification and prediction in binary case are
presented in Algorithm 1 and 2 in Appendix C, respectively.

Specifically, in the certification (Algorithm 1), the mean
and variance for the noise are generated by Noise Gen-
erator. Then, we select the top-1 class ĉA by the
ClassifySamples function, in which the base classifier
outputs the predictions on the noisy input sampled from
the noise distribution. Once the top-1 class is deter-
mined, classification will be run on more samples and the
LowerConfBound function will output the lower bound
of the probability pA computed by the Binomial test. If
pA > 1

2 , we output the prediction class and the certified
radius. Otherwise, it outputs ABSTAIN. In the prediction
(Algorithm 2), we also generate the noise distribution and
then compute the prediction counts over the noisy inputs.
If the Binomial test succeeds, then it outputs the prediction
class. Otherwise, it returns ABSTAIN.

6. Experiments
We evaluate the performance of certified robustness in this
section. In addition, we evaluate the enhanced robustness of
the randomized smoothing with anisotropic noises.

Metrics. Following (Cohen et al., 2019), we use the ap-
proximate certified test set accuracy to measure the certified
robustness, which is defined as the fraction of the test set
that is certified to be consistently correct within the certified
radius R. See Eq. (13) for the formal definition.

Acc(R) =

∑N
j=1 1[g′(xj+δ)=yj ]

N
for all ||δ||2 ≤ R (13)

where xj and yj denote the j-th sample and its label in the
test set. N denotes the number of images in the test set.

Experimental Settings. We evaluate our method on the
CIFAR10 (Krizhevsky et al., 2009) and ImageNet datasets
(Russakovsky et al., 2015). We use the original size of the
images in CIFAR10, i.e., 3× 32× 32, while for ImageNet,
we resize the images to 3 × 224 × 224. In the training,
we train the base classifier and the Noise Generator with
all the training set in CIFAR10 and ImageNet. We use the
ResNet110 and ResNet50 (He et al., 2016) as the base clas-
sifier for CIFAR10 and ImageNet, respectively. The training
loss is computed over 5 samples from the noise distribution
for each image. For the certification, following (Cohen et al.,
2019), we evaluate the certified accuracy on the entire test
set in CIFAR10 while randomly sample 500 samples in the
test set of ImageNet. In the certification, we also follow
(Cohen et al., 2019) to set α = 0.001 and numbers of Monte
Carlo samples n0 = 100 and n = 100, 000.

Experimental Environment. All the experiments were
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Figure 5. Certified accuracy comparison on CIFAR10 .

performed on the NSF Chameleon Cluster (Keahey et al.,
2020) with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz,
128G RAM, and Tesla V100 SXM2 32GB.

6.1. Certified Accuracy

We evaluate the certified accuracy on both CIFAR10 and
ImageNet, and compare our ARS with the isotropic RS
baseline (Cohen et al., 2019). In (Cohen et al., 2019), we
present the certified accuracy computed with Gaussian noise.
Following the setting in (Cohen et al., 2019), the noise
variance is set as σ = 0.12, 0.25, 0.5, and 1.0 in CIFAR10
and σ = 0.25, 0.5, 1.0 in ImageNet. In our method, we also
set the variance target σ0 to be consistent with (Cohen et al.,
2019).

We show the certified accuracy for different certified radii
on CIFAR10 and ImageNet datasets in Fig. 5 and Fig. 6,
respectively. We can observe that our certified accuracy
is higher than the baseline’s in the case of all the certified
radii. In particular, when the variance is large, we observe a
significant improvement in the certified accuracy using our
method. This might be because our mean map in anisotropic
Gaussian noise can bring the data representation to the cen-
ter of the correct class and further improve the prediction
probability on the noisy inputs (tuned by noise variance).

6.2. Best Performance Comparison

We compare our anisotropic randomized smoothing with the
state-of-the-art randomized smoothing methods against `2
perturbations. Specifically, (Cohen et al., 2019) derives the
first tight certified radius for Gaussian noise, which is shown
to have the best performance of certified robustness over a
wide range of distributions (Yang et al., 2020). Also, (Zhang
et al., 2020) proposes an optimization-based randomized
smoothing method with a special-designed distribution that
outperforms the Gaussian noise. (Alfarra et al., 2020) pro-
poses to optimize the variance of the noise distribution for

Figure 6. Certified accuracy comparison on ImageNet .

each input to provide a data-dependent randomized smooth-
ing. We compare our method with these state-of-the-art
methods in Table 1 and 2.

Both on the CIFAR10 and the ImageNet, our method sig-
nificantly improves the certified accuracy. For instance, we
observe the best improvement of 29% at R = 1.5 on CI-
FAR10, and 9% at R = 2.5 on ImageNet. Different from
the isotropic methods, when the certified radius is large, our
method can still provide certified protection for the images.

6.3. Enhanced Robustness against Pre-Perturbation

We also study a new interesting problem for randomized
smoothing methods which has not been discussed in exist-
ing works (Cohen et al., 2019; Zhang et al., 2020; Alfarra
et al., 2020). In general, the randomized smoothing is ap-
plied to certify the clean images such that the prediction
can be guaranteed to be correct if the clean image is per-
turbed within the certified radius. If the adversary crafts
an adversarial example for the certification, the guaranteed
prediction could be consistently wrong within the certified
radius (consistent with the class label for the adversarial ex-
ample), which contrarily enhances the attack performance
instead of protecting the inputs. Therefore, it is important
to build a “shield” for the randomized smoothing methods.
Different from isotropic randomized smoothing methods,
e.g., (Cohen et al., 2019), our generated mean map can
re-calibrate the data point towards its correct label, which
makes it harder to be attacked. In addition, our anisotropic
randomized smoothing can leverage larger and more com-
plicated noises to mitigate malicious perturbations.

We evaluate the performance of our method on defend-
ing against the strong white-box attacks, e.g., PGD attack
(Madry et al., 2018) (pre-perturbing). Specifically, the im-
age is perturbed by the PGD attack with max `∞ perturba-
tion 16/255 and 10 iterations before the certification, then
we compute the certified accuracy on the clean image and
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Radius 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
Cohen’s 83% 61% 43% 32% 22% 17% 14% 9% 7% 4% 3% 2% 1% 0 0
Zhang’s – 61% 46% 37% 25% 19% 16% 14% 11% 9% – – – – –
Alfarra’s 82% 68% 53% 44% 32% 21% 14% 8% 4% 1% – – – – –

Ours 84% 75% 68% 61% 55% 50% 45% 41% 36% 32% 28% 23% 19% 16% 12%

Table 1. Certified Accuracy (%) on CIFAR10.

Radius 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cohen’s 67% 49% 37% 28% 19% 15% 12% 9%
Zhang’s – 50% 39% 31% 21% 17% 13% 10%
Alfarra’s 62% 59% 48% 43% 31% 25% 22% 19%

Ours 67% 58% 49% 44% 39% 34% 30% 24%

Table 2. Certified Accuracy (%) on ImageNet.

Radius 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cohen’s 44% 38% 33% 26% 19% 15% 12% 9%

PGD 30% 24% 19% 14% 10% 7% 6% 5%
loss (%) -31% -37% -42% -46% -47% -53% -50% -44%

Ours 57% 54% 49% 44% 39% 34% 30% 24%
PGD 40% 33% 30% 27% 23% 20% 17% 14%

loss (%) -30% -39% -39% -39% -41% -41% -43% -42%

Table 3. Certified Accuracy (%) before and after the PGD attack
(pre-perturbing the inputs before certification).

the adversarial image and present the loss of the certified
accuracy. The variance σ and the target variance σ0 are
both set to 1.0. Other experimental settings are the same as
Section 6.1.

The experimental results are shown in Table 3. Although
the certified accuracy for both our method and (Cohen et al.,
2019) are degraded by the pre-perturbing PGD attacks, our
anisotropic randomized smoothing is still more robust (less
degradation) than (Cohen et al., 2019) against such attacks
in almost all the cases.

7. Discussions
7.1. Generalization to Other Noise Distributions

against Different `p Perturbations

In this paper, we take the anisotropic Gaussian noise as an
example for deriving the certified radii and designing the
Noise Generator. In fact, anisotropic randomized smoothing
and Noise Generator are general methods that can be used
for different distributions against different perturbations.
Here we show an extension of our theory to anisotropic
Laplace noise against `1 perturbations in Theorem 7.1.

Theorem 7.1 (Randomized Smoothing with Anisotropic
Laplace Noise). Let f : Rd → Y be any determin-
istic or random function, and let ε ∼ L(µ,Λ), where
Λ = diag(λ1, λ2, ..., λd). Let g′′ be defined as g′′(x) =
arg maxc∈Y P(f(x + ε) = c). Suppose that for a specific

x ∈ Rd, there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (14)

Then g′′(x+ δ) = cA for all ||δ||1 < R, where

R = max{1

2
min{λi} log(pA/pB),

−min{λi} log(1− pA + pB)}
(15)

where λi is the variance on i-th dimension of the input.

Proof. See detailed proof in Appendix D.

Similarly, for other noise distributions, e.g., Exponential,
Uniform, or Pareto distributions (Yang et al., 2020), we
can derive the certified radius with anisotropic noise using
the same method. In addition, once the certified radius is
derived, our Noise Generator can be used for generating the
parameters for any anisotropic noise distribution.

7.2. Runtime

Our anisotropic randomized smoothing relies on the Noise
Generator to provide optimal protection, which may need
extra runtime for generating the mean and variance than
traditional RS methods. However, the extra runtime result-
ing from the Noise Generator is actually negligible. Our
model (including Noise Generator) can be trained offline
and tested online as traditional RS methods. We evaluate
the online certification runtime for our method and (Cohen
et al., 2019) on ImageNet with four Tesla V100 GPUs and
2, 000 batch size, the average runtimes over 500 samples are
27.43s and 27.09s per sample for our method and Cohen et
al.’s method, respectively. Thus, the Noise Generator will
not affect the overall runtime of the certification much.

8. Conclusion
We study a new direction of randomized smoothing: the
anisotropy of the distributions. Facilitated by the proposed
Noise Generator, our anisotropic randomized smoothing sig-
nificantly improves the certified robustness, which has been
extensively evaluated on CIFA10 and ImageNet datasets.
The anisotropic randomized smoothing and the Noise Gen-
erator can be adapted to various distributions for further
improving the certified robustness in the future.
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A. Proofs for Theorem 4.1
We prove the Theorem 4.1 in this section. Similar to Cohen et al. (Cohen et al., 2019), Theorem 4.1 is based on Neyman-
Pearson lemma (Neyman & Pearson, 1933). Therefore, we will review the Neyman-Pearson lemma and then derive the
certified radius for anisotropic Gaussian noise.

Lemma A.1 (Neyman-Pearson (Neyman & Pearson, 1933)). Let X and Y be random variables in Rd with probability
density functions (PDF) fX and fY . Let h : Rd → {0, 1} be a random or deterministic function. Then:

(1) If S = {z ∈ Rd : fY (z)
fX(z) ≤ t} for some t > 0 and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥ P(Y ∈ S);

(2) If S = {z ∈ Rd : fY (z)
fX(z) ≥ t} for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤ P(Y ∈ S).

Proof. See the detailed proof in Cohen et al. (Cohen et al., 2019)

Then, we prove the special case of Lemma A.1 when the random variables follows independent anisotropic Gaussian
distribution.

Lemma A.2. Let X ∼ N (x + µ,Σ) and Y ∼ N (x + µ + δ,Σ), where δ = [δ1, δ2, ..., δd], µ = [µ1, µ2, ..., µd] and
Σ = diag(σ2

1 , σ
2
2 , ..., σ

2
d). Let h : Rd → {0, 1} be any deterministic or random function. Then:

(1) If S = {z ∈ Rd :
∑d
i=1

δi
σ2
i
zi ≤ β} for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥ P(Y ∈ S)

(2) If S = {z ∈ Rd :
∑d
i=1

δi
σ2
i
zi ≥ β} for some β and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤ P(Y ∈ S)

Proof. Let X ∼ N (x+ µ,Σ) and Y ∼ N (x+ µ+ δ,Σ). We have the probability density functions fX and fY as:

fX(z) = k exp

(
−

d∑
i=1

1

2σ2
i

[zi − (xi + µi)]
2

)

fY (z) = k exp

(
−

d∑
i=1

1

2σ2
i

[zi − (xi + µi + δi)]
2

)

where k is a constant. The ratio of the PDF is:

fY (z)

fX(z)
=

exp (−
∑d
i=1

1
2σ2

i
[zi − (xi + µi + δi)]

2)

exp (−
∑d
i=1

1
2σ2

i
[zi − (xi + µi)]2)

= exp

(
d∑
i=1

1

2σ2
i

[2ziδi − 2(xi + µi)δi − δ2i ]

)

= exp

(
d∑
i=1

ziδi
σ2
i

−
d∑
i=1

1

2σ2
i

[2(xi + µi)δi + δ2i )]

)

= exp (

d∑
i=1

δi
σ2
i

zi − c)

(16)
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where c =
∑d
i=1

1
2σ2

i
[2(xi + µi)δi + δ2i )], which is constant w.r.t. z. Let β = log t+ c, we have:

d∑
i=1

δi
σ2
i

zi ≤ β ⇐⇒ exp (

d∑
i=1

δi
σ2
i

zi − c) ≤ t

d∑
i=1

δi
σ2
i

zi ≥ β ⇐⇒ exp (

d∑
i=1

δi
σ2
i

zi − c) ≥ t

Therefore, for any β, there is some t > 0 for which:

{z :

d∑
i=1

δi
σ2
i

zi ≤ β} = {z :
fY (z)

fX(z)
≤ t} and {z :

d∑
i=1

δi
σ2
i

zi ≥ β} = {z :
fY (z)

fX(z)
≥ t} (17)

This completes the proof.

Then, we prove the Theorem 4.1.

Theorem 4.1 (Randomized Smoothing with Anisotropic Gaussian Noise). Let f : Rd → Y be any deterministic or
random function, and let ε ∼ N (µ,Σ). Let g′ be defined as in Eq. (4). Suppose that for a specific x ∈ Rd, there exist
cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (5)

Then g′(x+ δ) = cA for all ||δ||2 < R, where

R =
1

2
min{σi}(Φ−1(pA)− Φ−1(pB)) (6)

where σi denotes the variance on i-th dimension of the input, δ denotes the perturbation.

Proof. To prove g′(x+ δ) = cA, it is equivalent to prove that

P(f(x+ δ + ε) = cA) > P(f(x+ δ + ε) = cB) (18)

where cB denotes the second probable class.

For brevity, define the random variables

X := x+ ε = N (x+ µ,Σ)

Y := x+ δ + ε = N (x+ µ+ δ,Σ)
(19)

Then, proving Eq. (18) is equivalent to prove:

P(f(Y ) = cA) > P(f(Y ) = cB) (20)

From Eq. (5) we have:

P(f(X) = cA) ≥ pA and P(f(X) = cB) ≤ pB (21)

Then, we will show how to use Lemma A.2 to prove Eq. (20) from Eq. (21).
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First, we define the half-spaces:

A := {z :

d∑
i=1

δi
σ2
i

(zi − µi − xi) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA)}

B := {z :

d∑
i=1

δi
σ2
i

(zi − µi − xi) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB)}

(22)

where Φ−1 is the inverse of the standard Gaussian CDF.

Then, we will have:

P(X ∈ A) = P(

d∑
i=1

δi
σ2
i

(Xi − µi − xi) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

d∑
i=1

δi
σ2
i

N (0, σ2
i ) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

d∑
i=1

N (0,
δ2i
σ2
i

) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

√√√√ d∑
i−1

δ2i
σ2
i

N (0, 1) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(N (0, 1) ≤ Φ−1(pA))

= pA

(23)

P(X ∈ B) = P(

d∑
i=1

δi
σ2
i

(Xi − µi − xi) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

d∑
i=1

δi
σ2
i

N (0, σ2
i ) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

d∑
i=1

N (0,
δ2i
σ2
i

) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

√√√√ d∑
i−1

δ2i
σ2
i

N (0, 1) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(N (0, 1) ≥ Φ−1(1− pB))

= pB

(24)

Now we have P(X ∈ A) = pA (Eq. (23)), so by Eq. (21) we have P(f(X) = cA) ≥ P(X ∈ A). Using Neyman-Pearson
Lemma with h(z) := 1[f(z) = cA], we have:

P(f(Y ) = cA) ≥ P(Y ∈ A) (25)

Similarly, by Eq. (21), Eq. (24) and Neyman-Pearson Lemma, we also have:

P(f(Y ) = cB) ≤ P(Y ∈ B) (26)
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Finally, to prove that P(f(Y ) = cA) ≥ P(f(Y ) = cB), we will need to prove:

P(f(Y ) = cA) ≥ P(Y ∈ A) ≥ P(Y ∈ B) ≥ P(f(Y ) = cB) (27)

Recall that Y ∼ N (x+ µ+ δ,Σ), and A := {z :
∑d
i=1

δi
σ2
i
(zi − µi − xi) ≤

√∑d
i−1

δ2i
σ2
i
Φ−1(pA)}, we can have:

P(Y ∈ A) = P(

d∑
i=1

δi
σ2
i

(Yi − µi − xi) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

d∑
i=1

δi
σ2
i

N (δi, σ
2
i ) ≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

d∑
i=1

δi
σ2
i

N (0, σ2
i ) +

d∑
i=1

δ2i
σ2
i

≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(

√√√√ d∑
i−1

δ2i
σ2
i

N (0, 1) +

d∑
i=1

δ2i
σ2
i

≤

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(pA))

= P(N (0, 1) ≤ Φ−1(pA)−

√√√√ d∑
i=1

δ2i
σ2
i

)

= Φ(Φ−1(pA)−

√√√√ d∑
i=1

δ2i
σ2
i

)

(28)

Similarly, with B := {z :
∑d
i=1

δi
σ2
i
(zi − µi − xi) ≥

√∑d
i−1

δ2i
σ2
i
Φ−1(1− pB)}, we have:

P(Y ∈ B) = P(

d∑
i=1

δi
σ2
i

(Yi − µi − xi) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

d∑
i=1

δi
σ2
i

N (δi, σ
2
i ) ≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

d∑
i=1

δi
σ2
i

N (0, σ2
i ) +

d∑
i=1

δ2i
σ2
i

≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(

√√√√ d∑
i−1

δ2i
σ2
i

N (0, 1) +

d∑
i=1

δ2i
σ2
i

≥

√√√√ d∑
i−1

δ2i
σ2
i

Φ−1(1− pB))

= P(N (0, 1) ≥ Φ−1(1− pB)−

√√√√ d∑
i=1

δ2i
σ2
i

)

= P(N (0, 1) ≤ Φ−1(pB) +

√√√√ d∑
i=1

δ2i
σ2
i

)

= Φ(Φ−1(pB) +

√√√√ d∑
i=1

δ2i
σ2
i

)

(29)
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Therefore, to ensure P(Y ∈ A) ≥ P(Y ∈ B), we need:

Φ(Φ−1(pA)−

√√√√ d∑
i=1

δ2i
σ2
i

) ≥ Φ(Φ−1(pB) +

√√√√ d∑
i=1

δ2i
σ2
i

) ⇐⇒

√√√√ d∑
i=1

δ2i
σ2
i

≤ 1

2
(Φ−1(pA)− Φ−1(pB)) (30)

Let σm denote the minimum σi, we have

√√√√ d∑
i=1

δ2i
σ2
i

≤

√√√√ d∑
i=1

δ2i
σ2
m

=
||δ||2
σm

(31)

Therefore, if ||δ||2σm
≤ 1

2 (Φ−1(pA)− Φ−1(pB)), it can ensure Eq. (30).

To conclude, g′(x+ δ) = cA is ensured if:

||δ||2 ≤
1

2
min{σi}(Φ−1(pA)− Φ−1(pB)) (32)

Figure 7 also illustrates the relationship between the certified radius and Eq. (30).

𝛿1

𝛿2

𝜎1𝐾

𝜎2𝐾

𝑅

Figure 7. Illustration. Considering a δ space with two dimensions, Eq. (30) construct an ellipse with semi-minor axes σ1K and
semi-major axes σ2K, where K = 1

2
(Φ−1(pA) − Φ−1(pB)) and σ1 < σ2. Within the ellipse, the smoothed classifier’s prediction

is guaranteed to be cA. To find the certified radius R in `2 norm, it is equivalent to find the circle of radius such that the radius is the
semi-minor axes of the ellipse since within such circle, the smoothed prediction is constantly to be cA. Therefore, in high-dimensional
case, our certified radius is min{σi}K.

B. Proofs for Theorem 4.2
Follow the proof in Appendix A, we can prove the binary case of Theorem 4.1.

Theorem 4.2 (Binary Case). Let f : Rd → Y be any deterministic or random function, and let ε ∼ N (µ,Σ). Let g′ be
defined as in Eq. (4). Suppose that for a specific x ∈ Rd, there exist cA ∈ Y and pA such that:

P(f(x+ ε) = cA) ≥ pA ≥
1

2
(7)

Then g′(x+ δ) = cA for all ||δ||2 < R, where

R = min{σi}Φ−1(pA) (8)
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Proof. In the binary case, if P(f(x+ δ + ε) = cA) > 1/2, we can ensure that g′(x+ δ) = cA, which is also equivalent to
prove:

P(f(Y ) = cA) >
1

2
(33)

Define the half-space as in Eq. (22), we also have P(X ∈ A) = pA by Eq. (23). Using Neyman-Pearson Lemma, we have:

P(f(Y ) = cA) ≥ P(Y ∈ A) (34)

To guarantee that P(f(Y ) = cA) > 1
2 , we need P(Y ∈ A) > 1

2 .

By Eq. (28), we have:

P(Y ∈ A) = Φ(Φ−1(pA)−

√√√√ d∑
i=1

δ2i
σ2
i

) (35)

Therefore, to ensure P(f(Y ) = cA) > 1
2 , we need:

Φ(Φ−1(pA)−

√√√√ d∑
i=1

δ2i
σ2
i

) >
1

2
⇐⇒

√√√√ d∑
i=1

δ2i
σ2
i

< Φ−1(pA) (36)

Similarly, it is obvious to have:

||δ||2 < min{σi}Φ−1(pA) (37)

This completes the proof.

C. Algorithms

Algorithm 1 Anisotropic Randomized Smoothing Prediction
Given: Base Classifier f , Noise Generator gn, Input image x, Monte Carlo Sampling Number n, confidence 1− α
µ, Σ← gn(x)
counts← ClassifySamples(f, x, µ,Σ, n)
ĉA, ĉB ← top two indexes in counts
nA, nB ← counts[ĉA], counts[ĉB ]
if BinomPV alue(nA, nA + nB , 0.5) ≤ α then

return prediction ĉA
else

return ABSTAIN
end if

D. Proof for Theorem 7.1
Similar to the proof for Theorem 4.1, we first prove the special case of Lemma A.1 when the random variables follows
independent anisotropic Laplace distribution.
Lemma D.1. Let X ∼ L(x + µ,Λ) and Y ∼ L(x + µ + δ,Λ), where δ = [δ1, δ2, ..., δd], µ = [µ1, µ2, ..., µd] and
Λ = diag(λ1, λ2, ..., λd). Let h : Rd → 0, 1 be any deterministic or random function. Then:

(1) If S = {z ∈ Rd :
∑d
i=1

1
λi

(|zi − δi| − |zi|) ≥ β} for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥
P(Y ∈ S)



Certified Adversarial Robustness via Anisotropic Randomized Smoothing

Algorithm 2 Anisotropic Randomized Smoothing Certification
Given: Base Classifier f , Noise Generator gn, Input image x, Monte Carlo Sampling Number n0 and n, confidence 1−α
µ, Σ← gn(x)
counts select← ClassifySamples(f, x, µ,Σ, n0)
ĉA ← top index in counts select
counts← ClassifySamples(f, x, µ,Σ, n)
pA ← LowerConfBound(counts[ĉA], n, 1− α)

if pA > 1
2 then

return prediction ĉA and radius min{σi}Φ−1(pA)
else

return ABSTAIN
end if

(2) If S = {z ∈ Rd :
∑d
i=1

1
λi

(|zi − δi| − |zi|) ≤ β} for some β and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤
P(Y ∈ S)

Proof. Let X ∼ L(x+ µ,Λ) and Y ∼ L(x+ µ+ δ,Λ). We have the probability density functions fX and fY as:

fX(z) = k exp

(
−

d∑
i=1

1

λi
|zi − (xi + µi)|

)

fY (z) = k exp

(
−

d∑
i=1

1

λi
|zi − (xi + µi + δi)|

)

where k is a constant. The ratio of the PDF is:

fY (z)

fX(z)
=

exp
(
−
∑d
i=1

1
λi
|zi − (xi + µi)|

)
exp

(
−
∑d
i=1

1
λi
|zi − (xi + µi + δi)|

)
=

exp
(
−
∑d
i=1

1
λi
|zi|
)

exp
(
−
∑d
i=1

1
λi
|zi − δi|

)
= exp

(
−

d∑
i=1

1

λi
(|zi − δi| − |zi|)

)
(38)

Let β = − log t, we have:

d∑
i=1

1

λi
(|zi − δi| − |zi|) ≥ β ⇐⇒

fY (z)

fX(z)
≤ t

d∑
i=1

1

λi
(|zi − δi| − |zi|) ≤ β ⇐⇒

fY (z)

fX(z)
≥ t

(39)

This completes the proof.

Theorem 7.1 (Randomized Smoothing with Anisotropic Laplace Noise). Let f : Rd → Y be any deterministic or
random function, and let ε ∼ L(µ,Λ), where Λ = diag(λ1, λ2, ..., λd). Let g′′ be defined as g′′(x) = arg maxc∈Y P(f(x+
ε) = c). Suppose that for a specific x ∈ Rd, there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (14)
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Then g′′(x+ δ) = cA for all ||δ||1 < R, where

R = max{1

2
min{λi} log(pA/pB),

−min{λi} log(1− pA + pB)}
(15)

where λi is the variance on i-th dimension of the input.

Proof. Denote T (x) =
∑d
i=1

(|xi−δi|−|xi|)
λi

. Use Triangle Inequality for each term in the summation, we can derive a bound
for T (x):

−
d∑
i=1

|δi|
λi
≤ T (x) ≤

d∑
i=1

|δi|
λi

(40)

Define two sets:

A := {z : T (z) ≥ β1}
B := {z : T (z) ≤ β2}

(41)

where the β1 and β2 are selected to suffice:

P(X ∈ A) = pA

P(X ∈ B) = pB
(42)

Applying Lemma D.1 to Eq. (41), we have:

P(f(Y ) = cA) ≥ P(Y ∈ A)

P(f(Y ) = cB) ≤ P(Y ∈ B)
(43)

To ensure P(f(Y ) = cA) ≥ P(f(Y ) = cB), we need:

P(Y ∈ A) ≥ P(Y ∈ B) (44)

For P(Y ∈ A), we have:

P(Y ∈ A) =

∫∫
...

∫
A

kd exp(−
d∑
i=1

|xi − δi|
λi

)dx1dx2...dxd

=

∫∫
...

∫
A

kd exp(−
d∑
i=1

|xi|
λi

) exp(−T (x))dx1dx2...dxd

≥
∫∫

...

∫
A

kd exp(−
d∑
i=1

|xi|
λi

) exp(−
d∑
i=1

|δi|
λi

)dx1dx2...dxd

= exp(−
d∑
i=1

|δi|
λi

) pA

(45)
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The inequality in the middle is derived by Eq. (40). Simlilarly, for P(Y ∈ B), we have:

P(Y ∈ B) =

∫∫
...

∫
b

kd exp(−
d∑
i=1

|xi − δi|
λi

)dx1dx2...dxd

=

∫∫
...

∫
B

kd exp(−
d∑
i=1

|xi|
λi

) exp(−T (x))dx1dx2...dxd

≤
∫∫

...

∫
B

kd exp(−
d∑
i=1

|xi|
λi

) exp(

d∑
i=1

|δi|
λi

)dx1dx2...dxd

= exp(

d∑
i=1

|δi|
λi

) pB

(46)

Therefore, the robustness is guaranteed if exp(−
∑d
i=1

|δi|
λi

) pA ≥ exp(
∑d
i=1

|δi|
λi

) pB , which is equivalent to:

d∑
i=1

|δi|
λi
≤ 1

2
log(pA/pB) (47)

Since

d∑
i=1

|δi|
λi
≤

d∑
i=1

|δi|
min{λi}

(48)

if ||δ||1 ≤ 1
2 min{λi} log(pA/pB), the inequality (47) is also sufficed.

Also, if we apply the complement set of A to Eq. (45), we have:

P(f(Y ) = cA) ≥ 1− exp(

d∑
i=1

|δi|
λi

)(1− pA) (49)

By Eq. (46) and Eq. (44), we have:

d∑
i=1

|δi|
λi
≤ − log(1− pA + pB) (50)

Similarly, by Eq. (48), to guarantee the robustness, we need:

||δ||1 ≤ −min{λi} log(1− pA + pB) (51)

In conclusion, to guarantee the robustness, we need:

||δ||1 ≤ max{1

2
min{λi} log(pA/pB),−min{λi} log(1− pA + pB)} (52)

This completes the proof.


